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Abstract 

Computational and Experimental Analyses of Promoter Architecture in Yeasts 

by 

Derek Yung-Ho Chiang 

Doctor of Philosophy in Molecular and Cell Biology 

University of California, Berkeley 

Professor Michael B. Eisen, Chair 

 

 

Changes in gene expression represent a dynamic response of cells to 

environmental cues.  A fundamental challenge is to understand how regulatory 

information that specifies gene expression changes is encoded in genome sequences.  The 

multifactorial regulation of eukaryotic transcription initiation is influenced by promoter 

architecture, which governs the assembly of multiprotein regulatory complexes that 

contribute to synergistic gene activation.  The motivating thrust of this work is to distill 

key sequence features of promoter architecture and to understand the mechanisms by 

which these features regulate transcription initiation in yeast.   

I describe two computational approaches to associate short DNA sequences with 

gene expression changes in yeast.  Genome-mean expression profiles indicated the 

regulatory potential of individual sequences by averaging out the effects of multifactorial 

regulation.  In addition, I integrated comparative sequence data into the analysis of gene 

expression data, based on the expectation that promoter architecture has been 

phylogenetically conserved.  I predicted interactions between pairs of transcription 
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factors using a series of statistical tests to identify pairs of DNA hexamers that were 

jointly conserved and closely spaced. 

To transform these computational observations into mechanistic insights, I 

developed a synthetic promoter assay to investigate how reporter gene transcription was 

affected by varying the spacing and sequence between transcription factor binding sites.  

I applied this assay to characterize promoter architecture constraints on the collaborative 

recruitment of the coactivator Met4p by the transcription factors Cbf1p and Met31/32p in 

response to methionine starvation.  I found that the order of binding sites was crucial, and 

that distance constraints on coactivator recruitment were more flexible than those for 

cooperatively binding transcription factors.  Intriguingly, I discovered that certain 

sequence contexts between the binding sites abolished gene activation. 

 In conclusion, the incorporation of positional information for multiple 

transcription factor binding sites vastly improves the accuracy of regulatory predictions.  

The requirements of promoter architecture may vary, depending on the particular 

mechanism of transcription factor interactions.  In general, close spacing between 

transcription factor binding sites appears to be necessary, but not sufficient, for 

multifactorial regulation.  Further studies on the key determinants of sequence context 

would aid the synthetic design of regulatory sequences. 
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PREFACE: DECIPHERING THE EUKARYOTIC CIS-REGULATORY CODE 

Diversity is a hallmark of life.  Each species features distinct morphological and 

physiological traits that are inherited via genomic DNA.  Studies of mutants that lacked a 

particular trait demonstrated that certain genes were necessary for that trait.  Since the set 

of genes contained in a genome represents the functional repertoire for that organism, 

genome sequencing projects were initiated to glean insights about how genome content 

and architecture contribute to the unique biology of different organisms.  Remarkably, 

genome size and the number of genes encoded in an organism’s genome do not correlate 

with phenotypic complexity (Britten and Davidson, 1969).  Nonetheless, many genes 

found in divergent organisms nonetheless share a high degree of sequence similarity.  

Furthermore, such homologous genes are involved in the development of widely 

divergent tissues in different organisms (reviewed in Duffy and Perrimon, 1996).  These 

observations suggest that an important contribution to phenotypic diversity may be the 

precise spatial and temporal regulation of the expression of genes in response to specific 

environmental conditions.  Therefore, a fundamental problem is to understand how this 

regulatory information is encoded within genome sequences.  Our ultimate goal would be 

to predict the precise conditions under which any given gene is expressed.  Not only 

would these predictions aid the functional annotation of uncharacterized genes, but 

comparisons between the regulation of homologous genes in different organisms could 

also suggest how regulatory divergence underlies phenotypic diversity. 

The coordinated regulation of multiple genes provides a key towards decoding 

cis- regulatory information.  Also called gene batteries, these gene groups often share 

related functions that confer a particular cellular capability (Britten and Davidson, 1969). 
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The simultaneous expression of multiple genes is enforced by common cis-regulatory 

sequences that are shared among member genes in a certain gene group.  In addition, 

eukaryotic gene regulation is often multifactorial.  Since the activity of many 

transcription factors often responds to certain environmental conditions, unique 

combinations of cis-regulatory sequences can make a group of genes responsive to a 

precise set of environmental conditions.  The prevalence of multifactorial regulation also 

enables the integration of multiple signaling pathways and transcription factors upstream 

of transcription initiation.  As a result, complicated patterns of gene expression can arise 

from the superimposed regulation of multiple signaling pathways. 

My dissertation sought to understand how mechanisms of signal integration are 

governed by promoter architecture, which refers to distance constraints and sequence 

context among multiple transcription factor binding sites in yeast intergenic regions.  In 

this introductory chapter, I will review previous biological and computational studies on 

the encoding of cis-regulatory information in genome sequences.  Signal integration is 

accomplished, in part, by the assembly of transcription factors into multiprotein 

regulatory complexes that are necessary for transcription initiation.  After briefly 

describing these complexes, I will discuss how the organization of regulatory sequences 

can impose geometric constraints on multiprotein complex assembly.  I will then present 

experimental evidence that different mechanisms of transcription factor interactions may 

impose different constraints on regulatory sequence organization.  Next, I will consider 

how phylogenetic conservation provides a filter for discerning functional features of 

regulatory sequences.  Finally, I will review how computational models of transcription 
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factor binding specificities and regulatory sequence interactions have been used to 

classify promoters that generate particular patterns of gene expression. 

 

SECTION 1.  REGULATION OF TRANSCRIPTION INITIATION IN EUKARYOTES 

Transcription factors transduce cellular signals to alter gene expression 

Most transcription factors are sequence-specific DNA-binding proteins with 

distinct protein domains that can be mixed and matched (Keegan et al., 1986).  The 

DNA-binding domain of a protein makes specific contacts with DNA within a binding 

site sequence that is typically 5 to 12 nucleotides long.  DNA-binding domains belong to 

a limited set of protein families that recognize groups of similar sequences (Luscombe et 

al., 2000).  Most transcription factors have an activation domain or a repression domain 

that is dispensable for DNA binding, but necessary to effect gene expression changes 

(reviewed by Ptashne, 1988).  Short peptides within activation domains are sometimes 

sufficient to recapitulate its function (Ma and Ptashne, 1987a).  These peptides tend to 

have atypical amino acid composition, with stretches of acidic-rich, glutamine-rich or 

hydrophobic-rich residues.  Notably, activation domains from one transcription factor 

also function in different species, which suggests a conserved mechanism of activation.  

Indeed, activation domains help nucleate the recruitment of conserved multiprotein 

regulatory complexes, which modulate the rate of transcription initiation. 

Several mechanisms regulate the activity of transcription factors in response to 

specific environmental conditions.  Activation domains can be masked by an inhibitory 

domain or by interactions with negative regulators.  For instance, the Gal4 activation 

domain is inhibited by Gal80 binding in low galactose conditions (Ma and Ptashne, 
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1987b).  Conformational change of the Hsf1 transcription factor renders it active at 

higher temperatures (Chen and Parker, 2002).  Ligands can also induce conformational 

changes in several transcription factors, including Put3, Ppr1 and Leu3 (Sze et al., 1992; 

Flynn and Reece, 1999; Sellick and Reece, 2003).  Export to the cytoplasm can prevent 

transcription factors from binding DNA.  For example, phosphorylation of Pho4 mediates 

its export into the cytoplasm by the exportin, Msn5 (Kaffman et al., 1998). 

 

Enzymology of yeast transcription initiation 

Transcription initiation begins after the assembly of RNA polymerase II and 

many general transcription factors at the transcription start site.  General transcription 

factors in yeast include TFIID, which contains the TATA-box binding protein (TBP or 

Spt15 in S. cerevisiae), TFIIB, TFIIE, TFIIF, and TFIIH (reviewed by Hampsey, 1998, 

Kuras et al., 2000)).  Each of these factors is composed of multiple subunits.  Different 

yeast promoters have different requirements for general transcription factors in vivo (Li et 

al., 2000).  The recruitment of TFIID (and thus TBP) is the rate-limiting step of 

transcription initiation (Ptashne and Gann, 1997; Kuras and Struhl, 1999; Li et al., 1999).  

TBP recruitment is necessary for transcriptional activation, since mutations were found 

that block activation by GAL4-VP16, but did not affect basal transcription (Kim et al., 

1994).  Artificial tethering of TBP to a promoter region via a fusion with the DNA-

binding domain of LexA is also sufficient to activate transcription in vivo (Chatterjee and 

Struhl, 1995; Klages and Strubin, 1995).  

In eukaryotes, transcription initiation is constitutively repressed by nucleosomes, 

which consist of approximately 146 bp of DNA wrapped around an octameric complex of 
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the histones H3, H4, H2A and H2B (reviewed by Struhl, 1999).  Nucleosome occlusion 

of binding sites for TBP and transcription factors can be overcome by several 

mechanisms.  First, the N-terminal tails of core histones are accessible to enzymes that 

regulate covalent modifications of lysine residues (Luger et al., 1997).  These 

modifications serve two purposes.  By neutralizing the positive charge on lysine residues, 

these modifications weaken electrostatic contacts between histones and DNA, thus 

enabling TBP and other proteins higher accessibility to their binding sites (Anderson et 

al., 2001).  In addition, these modifications serve as novel epitopes for the binding of 

other regulatory proteins (Stahl and Allis, 2000).  Another mechanism for relieving 

histone-imposed transcriptional repression comes from sliding or displacing nucleosomes 

in promoter regions, thus increasing the accessibility of transcription factors to DNA 

(Becker, 2002).  Both of these mechanisms combine to clear nucleosomes from the 

promoter regions of transcribed genes (Boeger et al., 2003, Reinke and Horz, 2003).  

Indeed, genome-wide studies have reported a strong association between core histone-

depleted regions and transcription rates (Bernstein et al., 2004). 

A single transcription factor (or its activation domain) can recruit other regulatory 

factors, including histone acetyltransferases, ATP-dependent chromatin remodeling 

enzymes, and the mediator complex (Swanson et al., 2003).  Mutations in components of 

these complexes reduce the in vivo recruitment of TBP or RNA polymerase at several 

promoters (Qiu et al., 2004).  Chromatin immunoprecipitation studies have also surveyed 

the order in which regulatory complexes are associated with actively transcribed genes 

(Gregory et al., 1999; Bhoite et al., 2001; Cosma et al., 2001; Larschan and Winston, 

2001; Bryant and Ptashne, 2003).  Whereas the order of complex recruitment differs at 
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various promoters, the collaboration of multiple complexes in a multi-step process of 

gene activation emerges as a common theme.  I will now briefly outline some key roles 

of these complexes. 

Histone acetyltransferases 

The Gcn5 histone acetyltransferase is the catalytic component of the yeast SAGA 

complex, which is recruited to the promoters of many genes in vivo (reviewed by 

Carrozza et al., 2003).  Numerous studies have proposed a correlation between histone 

acetylation and transcriptionally active genes (reviewed by Struhl, 1998).  However, 

chromatin immunoprecipitation surveys of histone H3 and histone H4 acetylation in yeast 

demonstrated that gene activation by various transcription factors is sometimes associated 

with deacetylation (Deckert and Struhl, 2001).  Other yeast histone acetyltransferases 

include Esa1 – which is recruited to the promoters of ribosomal proteins and heat shock 

genes (Reid et al., 2000) – as well as Sas2 and Sas3, which oppose silencing at the mating 

type locus (Kimura et al., 2002; Suka et al., 2002).  

ATP-dependent chromatin remodeling complexes 

Chromatin remodeling complexes alter the contacts between histones and DNA, 

leading to nucleosome displacement or exchange (reviewed by Martens and Winston, 

2003; Lusser and Kadonaga, 2003).  There are several groups of chromatin remodeling 

enzymes in yeast, including SWI/SNF, RSC, ISWI, and INO80.  The Swi2/Snf2 ATPase 

is the catalytic subunit of the yeast SWI/SNF chromatin remodeling complex.  This 

subunit can be recruited by activation domains of transcription factors, as well as 

bromodomain-mediated interactions with acetylated lysine residues in histone N-terminal 

extensions.  Microarray studies revealed that the SWI/SNF complex is involved in the 
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regulation of approximately 5% of yeast genes (Sudarsanam et al., 2000).  By contrast, 

the Isw1-containing ISWI complex has been shown to repress transcription of the PHO8 

promoter by displacing TBP (Moreau et al., 2003).  These studies suggest that different 

chromatin remodeling complexes may facilitate either gene activation or repression. 

Mediator 

The yeast SRB mediator complex bridges interactions between transcription 

factors and general transcription factors (reviewed by Hampsey and Reinberg, 1999; 

Myers and Kornberg, 2000).  The mediator complex is required for RNA polymerase and 

general transcription factors to respond to activators in in vitro transcription assays.  Its 

multiple roles include TBP recruitment via Gal11 and promoting phosphorylation of 

RNA polymerase II C-terminal domain by Srb10/Srb11.  Chromatin immunoprecipitation 

studies found that mediator subunits were localized to upstream activating sequences 

before the recruitment of TBP and general transcription factors (Bhoite et al., 2001; 

Bryant and Ptashne, 2003; Kuras et al., 2003).  These studies further support the model 

that the mediator complex is recruited before and separately from RNA polymerase II.  
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SECTION 2.  DESIGN PRINCIPLES OF TRANSCRIPTIONAL CONTROL REGIONS 

The effects of regulatory sequence organization on gene expression have been 

long appreciated.  Positional organization of transcription factor binding sites can govern 

protein-protein interactions and thus affect the efficiency of multiprotein complex 

assembly.  In this section, I will review evidence for the enhanceosome model, which 

proposes that multiprotein complex recruitment requires the stereospecific alignment of 

transcription factors.  Nevertheless, it has become apparent that distance constraints are 

far from universal.  Rather, different types of distance constraints may be enforced, 

depending on the mechanism of transcription factor interactions.  I will discuss some 

experimental characterizations of helical phasing, precise spacing and short-range 

distance constraints.  However, most of these experiments only tested a handful of 

different distances with fixed sequences. 

An unresolved question is whether a prototype for distance constraint can be 

generalized within a family of related transcription factors.  Conversely, if each set of 

interacting transcription factors were to have idiosyncratic positional requirements, it 

would be much more difficult to derive general principles of promoter architecture.  

Further structural studies on the interaction surfaces of activation domains with 

multiprotein complex subunits could enable computational docking predictions on the 

flexibility of regulatory sequence organization.  Despite the wealth of biochemical data 

on transcription factor interactions, our ability to predict transcription factor interactions 

from DNA sequences remains woefully incomplete. 
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Basic anatomy and location of cis-regulatory information 

Cis-regulatory information can be divided into two main components (Figure 1.1).  

The core promoter contains certain sequences that position the assembly of the RNA 

polymerase preinitiation complex.  The rate-limiting component for assembly of this 

complex is the TATA-box binding protein (TBP), which binds approximately 40 to 120 

bp upstream of the transcription start site in yeast (Hampsey, 1998).  TBP can bind 

directly to promoters with the consensus sequence TATA(A/T)A(A/T)(A/G); about 20% 

of yeast promoters contain a match to this consensus that is conserved among alignments 

of four closely-related yeast species (Basehoar et al., 2004).  At other promoters lacking 

this consensus sequence, TBP can still bind to the core promoter as part of the 

multiprotein complex TFIID. 

Throughout this work, I define a transcriptional control region as a DNA 

sequence that is sufficient to recapitulate a portion of the gene expression pattern of a 

wild-type gene.  These regions often contain several binding sites for multiple 

transcription factors, which modulate TBP recruitment and thus levels of gene expression 

(Ptashne and Gann, 1997; Kuras and Struhl, 1999).  In yeast, transcriptional control 

regions are found within several hundred base pairs upstream of the transcription start 

site.  These regulatory regions have also been named upstream activating sequences or 

upstream repressive sequences (reviewed by Struhl, 1995).  Since many yeast upstream 

activating or repressive sequences are orientation- and distance-independent, they are 

considered to be functionally analogous to metazoan enhancers (Hampsey, 1998). 
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 Figure 1.1) Hierarchical organization of cis-regulatory information 

 

 

 

 

 

 

 

 

 

Usually located within several kilobases of a gene, a transcriptional control region 

comprises a core promoter and one or more cis-regulatory modules.  The core promoter 

contains a transcription start site (TSS) and a TATA box.  The fundamental unit of 

regulatory information is a transcription factor binding site, which is indicated by a 

colored rectangle.  Transcription factors may bind cooperatively or antagonistically at 

composite elements, which are depicted by ovals.  Cis-regulatory modules comprise 

multiple binding sites and composite elements.
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Cis-regulatory information is hierarchical and modular 

The hierarchical organization of cis-regulatory information is an important design 

principle (Figure 1.1).  Transcription factor binding sites represent the basic element of 

regulatory information.  The next level of regulatory organization involves the relative 

placement between two binding sites, which governs protein-protein interactions between 

transcription factors.  Closely-spaced transcription factor binding sites can be considered 

a functional unit, called a composite element (Diamond et al., 1990).  These composite 

elements implement various schemes of regulatory logic, depending on transcription 

factor occupancy under different conditions.  A key determinant for this combinatorial 

regulation is the spacing between the binding sites for the individual transcription factors 

(Pearce et al., 1998).  Finally, multiple composite elements can be contained within a cis-

regulatory module up to several hundred base pairs in length.  These modules are 

functionally defined as the minimal sequence regions that are sufficient to recapitulate a 

discrete component of normal spatio-temporal regulation, when placed upstream of a 

reporter gene. 

Detection of the coincident binding of two or more different transcription factors 

can integrate the activation states of multiple upstream signaling pathways.  For instance, 

the yeast sporulation gene, IME1, is regulated in response to glucose, acetate, nitrogen 

and cell type signaling pathways (Vershon and Pierce, 2000).  Secondly, the presence of 

multiple activation domains tethered to a regulatory sequence may achieve synergistic 

recruitment of downstream enzymatic complexes.  In addition, increased target gene 

specificity can be achieved with binding sites for multiple transcription factors, which 

contain more information than a single binding site alone.  The combinatorial nature of 
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gene regulation helps ensure that inadvertent gene expression does not happen simply due 

random occurrences of transcription factor binding sites.  Finally, various combinations 

of transcription factor partners provide a modular means of generating regulatory 

diversity.  

 

Synergistic activation is a consequence of multifactorial transcriptional regulation 

Multiple binding sites for the same or different transcription factors can generate a 

more-than-additive effect on gene activation.  For instance, the shared promoter of the 

divergently transcribed GAL1 and GAL10 genes contains four low-affinity binding sites 

for the transcriptional activator, Gal4 (Giniger & Ptashne, 1988).  A single Gal4 binding 

site only supported 1% of endogenous gene activation in response to galactose.  

However, two low-affinity binding sites within 45 bp increased reporter gene expression 

to 20% of the wild-type promoter.  This synergistic effect on gene activation has also 

been observed for multimers of other transcription factors. 

Synergistic gene activation could arise from protein-DNA or protein-protein 

interactions that influence transcription factor assembly on DNA.  An increase in the 

probability of a transcription factor bound to a transcription control region would prolong 

downstream signals that ultimately recruit RNA polymerase.  Protein-protein interactions 

between the same or different transcription factors can increase the affinity for the ternary 

complex with DNA, thus increasing occupancy at composite elements (Mueller and 

Nordheim, 1991).  In addition, occupancy of a single transcription factor at a promoter 

can be increased by multiple copies of its binding site, as demonstrated by methylation 

protection assays (Giniger and Ptashne, 1988, Tanaka, 1996).  This increased occupancy 
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may be caused by an increase in the local concentration of transcription factor or by 

collaborative removal of nucleosomes from DNA.  In the latter case, the binding of a 

single transcription factor may overcome a large energetic penalty for increasing 

nucleosome accessibility, making it less energetically costly for subsequent transcription 

factors to bind (Polach and Widom, 1996; Vashee et al., 1998; Miller and Widom, 2003).   

Another model for synergistic gene activation, called the multiple contact model, 

invokes the recruitment of auxiliary regulators (Herschlag and Johnson, 1993).  Multiple 

bound transcription factors could interact with distinct subunits of various regulatory 

complexes, such as coactivators, general transcription factors, histone acetyltransferases 

and nucleosome remodeling enzymes.  By stimulating different rate-limiting steps in the 

progression to transcription initiation, multiple transcription factors can exert a kinetic 

enhancement of overall transcription. 

 

Promoter architecture governs the assembly of multiprotein regulatory complexes 

Polymerase recruitment depends on the geometry and stability of multiprotein complexes 

Transcriptional control regions can be considered as DNA scaffolds that bring 

multiple transcription factors in close proximity, thus enhancing protein-protein 

interactions that synergistically influence gene expression.  Molecular scaffolds 

implement several design principles that integrate multiple binding events (Dueber et al., 

2004).  By orienting and increasing the local concentration of the individual transcription 

factor components, scaffolds facilitate protein-protein interactions between them.  These 

interactions are specified by steric conformations imposed by distance constraints 

between individual transcription factor binding sites.  Scaffolds also detect the coincident 
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binding of multiple proteins.  For instance, composite elements enforce the mutual 

binding of two or three transcription factors to adjacent sites, through increases in binding 

affinity that involve direct protein-protein interactions between the individual proteins.  

An alternate mechanism of coincidence detection could be achieved via a protein that 

interacts with multiple transcription factors.  Indeed, separate domains of the coactivator 

protein CBP/p300 can simultaneously interact with bound transcription factors (Ikeda et 

al., 2002; Goto et al., 2002). 

Countless experiments have demonstrated that variations in spacing between 

transcription factor binding sites can alter the gene expression output specified by a 

regulatory region.  Thus, transcriptional control regions encode both sequence 

information for a unique combination of transcription factors, as well as positional 

information between the binding sites.  Throughout this work, I will use the term 

promoter architecture to refer to the distance constraints and sequence context among 

multiple transcription factor binding sites in transcriptional control regions, particularly 

the intergenic regions of yeast.  The arrangement of bound transcription factors often 

enforces precise geometrical conformations that represent optimal interaction surfaces for 

downstream coactivators and enzymes.  Various combinations of bound activator 

domains could mix and match to form different interaction surfaces that specifically 

recruit different coactivators. 

 

Coincident binding of multiple transcription factors can be enforced by enhanceosomes 

Enhanceosome assembly provides a paradigm for how specific combinations of 

appropriately spaced transcription factor binding sites can be detected by the 
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transcriptional machinery of the cell (Figure 1.2).  A common regulatory theme emerged 

from the characterization of several proximal enhancers: a stereospecific configuration of 

bound transcription factors and their associated activation domains was required for 

synergistic gene activation (Merika and Thanos, 2001).  The relative arrangements of 

bound transcription factors modified their aggregate protein-protein interaction surface, 

thus imposing geometric constraints on the nature of the coactivators, modification 

enzymes, and general transcription factors subsequently recruited. 

The enhanceosome model for the integrated effect of multiple transcription 

factors resulted from studies of the interferon-beta enhancer (reviewed by Grosschedl, 

1995; Carey, 1998).  This enhancer contains four transcription factor binding sites within 

65 bp.  In vitro reconstitution experiments of enhancer DNA with transcription factors 

elucidated several major regulatory principles.  First, the assembly of transcription factors 

at the enhancer depended on the orientations of binding sites and the distances between 

them (Kim and Maniatis, 1997).  The native orientation of the ATF-2/Jun site was 

required for interacting with IRF-1 and recruiting it to the enhancer (Falvo et al., 2000), 

whereas an insertion of 6 bp between the IRF-1 and NF-kB binding sites reduced gene 

activation (Kim and Maniatis, 1997).  In addition, stereospecificity of protein-protein 

interactions among activator domains influenced the level of coactivator recruitment. 

The activation domains of bound transcription factors were not interchangeable, 

suggesting that a unique surface of activation domains was required for recruitment of the 

coactivator, CBP/p300 (Merika et al., 1998). 
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 Figure 1.2)  Enhanceosomes direct the stereospecific assembly of multiprotein 

regulatory complexes 

 

 

 

 

 

 

 

Enhanceosomes represent organized scaffolds for the binding of multiple 

transcription factors, which are depicted as colored shapes.  The precise spatial 

orientation of transcription factor activation domains directs the synergistic recruitment 

of multiprotein regulatory complexes, which are indicated by white ovals.  These 

complexes may include histone acetyltransferases, ATP-dependent chromatin remodeling 

enzymes, and mediator.  Stereospecific recruitment imposes constraints on the order, 

orientation and relative spacing of transcription factor binding sites in enhanceosomes.  

Architectural proteins, indicated by red triangles, also modify DNA bending. 
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DNA bendability proved to be another key component of enhanceosome design.  

Circular permutation assays demonstrated that the high-mobility group transcription 

factor, HMG I(Y), reverses DNA bending caused by ATF-2 binding, thus favoring 

interactions between c-Jun and NF-κB (Falvo et al., 1995).  In vitro reconstitution studies 

of enhancer transcription demonstrated that HMG I(Y) was a critical component for 

maximal activation of the interferon-beta enhancer (Kim and Maniatis, 1997).  In 

addition, the HMG I(Y) protein can influence transcription factor assembly directly by 

interactions with ATF-2 (Kim and Maniatis, 1997).  These studies implicate both intrinsic 

DNA bending and proteins that alter DNA bending as strategies for regulating protein-

protein interactions and thus transcriptional activation levels.  

 

Distance constraints may depend on mechanism of transcription factor interactions 

The enhanceosome model proposes that the recruitment of multiprotein regulatory 

and enzymatic complexes requires the precise stereospecific binding of transcription 

factors in transcriptional control regions.  Therefore, the relative placement of 

transcription factors should affect the extent of multiprotein complex assembly and 

subsequent gene expression.  Several major categories of distance constraints between 

transcription factor binding sites have been characterized, which correspond to different 

mechanisms of transcription factor interactions and subsequent recruitment of cofactors 

(Figure 1.3).  In the following section, I will review the major categories of distance 

constraints. 
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Figure 1.3)  Major categories of distance constraints between transcription factor 

binding sites 

 

Distance constraints between binding sites often reflect the mechanism by which 

transcription factors interact.  (A) Helical phasing between transcription factors may 

indicate that activation domains provide a unique recruitment surface on the same face of 

the DNA helix.  (B) Precise spacing is often imposed by direct protein-protein 

interactions between transcription factors.  (C) Short-range distance constraints may 

reflect an indirect interaction that is bridged by a coactivator. 
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Helical phasing 

The helical phasing between binding sites may be critical for transcription factors 

that require activation domains on the same face of the DNA helix.  In eukaryotic cells, 

this effect was first characterized in the SV40 early enhancer (Takahashi et al., 1986).  

Insertions of odd multiples of half a DNA turn (5, 15, 25 bp) between the enhancer and a 

tandem array of Sp1 binding sites reduced gene activation by up to 90%.  In contrast, 

insertions that preserved helical phasing between these two regions could achieve 

relatively high levels of gene expression. 

At short distances, transcription factors bound to the same face of the DNA helix 

could present larger interaction surfaces to each other and to other proteins.  One 

consequence of larger surfaces is the facilitation of cooperative binding through favorable 

energetic interactions.  For example, the heat shock transcription factor HSF binds 

cooperatively to a high-affinity site and a low-affinity site in the promoter of the 

Drosophila hsp70 gene.  Whereas two studies demonstrated that helical phasing between 

the binding sites modulates reporter gene activation, they conflicted on the maximal 

spacing between the binding sites (Cohen and Meselson, 1988; Amin et al., 1994).  

Cohen and Meselson reported that insertions of 30 bp, 70 bp or 300 bp reduced reporter 

gene expression by only 2-fold, whereas Amin et al. observed a 10-fold reduction in 

reporter gene expression with distances greater than 20 bp.  Although the assay 

sensitivities of Northern blots versus beta-galactosidase staining could account for this 

difference, it is possible that the nucleotide composition of the spacer sequences also 

affected cooperative binding.  Helical phasing has also been reported between binding 
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sites for two different transcription factors, such as for NF-Y and SRF binding sites in the 

human beta-actin proximal promoter (Danilition et al., 1991). 

 

Precise spacing 

Composite elements demonstrate two distinct types of distance constraints.  Some 

transcription factors only interact under strict conformational requirements.  The insertion 

of a single base pair between binding sites causes a rotational shift of approximately 35°.  

In some cases, this rotation leads to steric incompatibility and abolishes cooperative 

binding (Jin et al., 1995; Tan and Richmond, 1998).  Since related transcription factors 

with slightly different interaction geometries can discriminate the distance between 

binding sites, composite elements with different spacer sizes could impose specificity on 

transcription factor binding. 

Certain transcription factor families exploit this regulatory principle.  Within a 

family, DNA-binding domains recognize similar sequences, yet each transcription factor 

may have unique protein interaction surfaces that mediate pairing with specific partners.  

Different members of the nuclear receptor family recognize hexameric half-sites that are 

found in various orientations and spacings (Remenyi et al., 2004).  Interestingly, the 

retinoid X receptor (RXR) can bind as a heterodimer with four different family members.  

The spacing between the half-sites (1, 3, 4 or 5 bp) specifies the partner for RXR at a 

particular binding site.  RXR presents different interaction surfaces to its different 

binding partners at various spacings (Rastinejad et al., 1995).  Analogously, homodimers 

of the zinc binuclear cluster family of transcription factors found in fungi recognize 

triplet half-sites that are spaced between 0 and 11 bp apart (Akache et al., 2001).  Domain 
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swap experiments showed that a 19-residue sequence determines the interacting partner 

geometry, thus specifying the half-site spacing that is recognized (Reece and Ptashne, 

1993).  Crystal structures demonstrated that the dimerization domains of various family 

members interact with distinct geometries, thus providing a mechanism for distinguishing 

half-site spacings (King et al., 1999). 

 

Short-range distance constraints may govern cooperative binding interactions 

Other composite elements can tolerate some flexibility in the distance between 

their binding sites.  Different effects of distance changes on gene expression could be 

expected depending on the regulatory mechanism.  Since protein-protein interactions will 

experience rotational strain with base pair insertions, increased spacing between binding 

sites should lower the affinity of transcription factors that bind cooperatively to DNA.  

Conversely, decreasing the spacing between binding sites may cause steric hindrance, 

thus occluding one of the transcription factors from binding.  Under the mechanism of 

independent binding, individual transcription factors should have unchanged DNA 

affinities for binding sites spaced at different distances apart.  However, distance changes 

between binding sites could alter the interaction surface presented by activation domains, 

thus weakening the recruitment efficiency of the transcription factor pair.  In either case, 

one would expect that the extent of gene activation should decrease as the spacing 

between binding sites is increased.   Surprisingly, this hypothesis has seldom been tested 

systematically.  Most studies examine the effect of fewer than five different distances 

between transcription factor binding sites on gene activation.  With such low sampling, it 
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can be difficult to determine the minimum and maximum distances between transcription 

factor binding sites for which synergistic activation can occur. 

Before my work began, the most detailed characterization of distance constraints 

between any pair of yeast transcription factors was reported for Rap1 and Gcr1/Gcr2 

(Drazinic et al., 1996).  Footprinting studies showed that binding sites for the individual 

transcription factors were 13 bp apart, as measured by the center-to-center distance 

between the binding sites.  Insertions between 5 bp and 30 bp were introduced at 5 bp 

intervals between the footprinted binding sites in the upstream activating sequence of the 

PYK1 gene.  Whereas an insertion of 5 bp abolished activation of a lacZ reporter gene, an 

insertion of 10 bp restored activation to half of wild-type levels.  Insertions of 15 or more 

bp showed a monotonic decrease in lacZ levels, which were reduced over 8-fold 

compared to the native spacing.  The extent of reporter gene activation correlated with 

the occupancy of the Gcr1/Gcr2 site, as demonstrated with in vivo guanine methylation 

protection assays.  In vitro gel shift assays showed that Rap1 recruited Gcr1/Gcr2 to the 

composite element, and that this recruitment strength decreased monotonically at 

distances greater than 23 bp.  For distances of 23 bp or below, the helical phasing 

between binding sites governed the extent of synergistic activation. 

 

Promoter architecture: examples from Saccharomyces cerevisiae 

Common features of promoter architecture impose cell type specificity 

The expression of mating-type specific genes is the prototypic example of yeast 

combinatorial transcriptional regulation (reviewed by Herskowitz, 1989; Johnson, 1995).  

Yeast exist as one of three cell types: haploid a, haploid α, and diploid a/α.  Cell type is 
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maintained by the coordinated expression of a-specific genes, α-specific genes, or 

haploid-specific genes.  Among the cell-type determining genes are the transcription 

factors a1 (in a cells), as well as α1 and α2 (in α cells).  The transcription factor Mcm1 is 

also found in all cell types.  Although each of these transcription factors has low 

sequence specificity, only recognizing 4 unique base pairs, transcription factor pairs are 

sufficient to regulate the ≤10 genes that are specific to each cell type.  Two common 

features of promoter architecture impose constraints on transcription factor interactions, 

thus enabling such precise regulation.  Composite elements enforce the cooperative 

binding of transcription factors to adjacent sites, thus facilitating protein-protein 

interactions.  These interactions are also stabilized by DNA bending induced by the 

transcription factors.  Combined genetic, biochemical and structural studies of these 

transcription factor pairs demonstrate stringent constraints on promoter architectures for 

different cell types. 

Cooperative binding to low affinity sites is a common regulatory strategy at all 

cell type-specific promoters.  For repression in diploids, haploid-specific promoters share 

a 20 bp composite element that contains binding sites for the repressors, a1 and α2. 

At a-specific promoters, a high-affinity Mcm1 binding site is flanked on both sides by 

binding sites for α2.  The central Mcm1 binding site imposes orientation and spacing 

constraints that permit efficient recruitment of α2 (Smith and Johnson, 1992). 

At α-specific promoters, the transcription factor Mcm1 binds cooperatively with α1p to a 

22 bp composite element, which is necessary and sufficient to activate gene expression 

(Bender and Sprague, 1987; Inokuchi et al., 1987; Jarvis et al., 1988).   Point mutants in 

Mcm1 that abolish interactions with α1 reduce binding to the composite element in vitro 
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and gene activation in vivo (Bruhn and Sprague, 1994).  Mcm1 binds cooperatively to α2 

via a different interaction surface to repress a-specific genes.  Thus, the cooperative 

binding of transcription factor pairs specifies which genes are regulated in response to the 

transcription factors present in a particular cell type. 

The precise spacing between individual binding sites is crucial for cooperative 

binding at cell type-specific promoters.  At haploid-specific promoters, the insertion of a 

single base pair between the a1 and α2 binding sites abolishes cooperative binding (Jin et 

al., 1995).  At a-specific promoters, insertions of 3 base pairs on either side of the Mcm1 

binding site abolishes α2-mediated repression (Smith and Johnson, 1992).  Intriguingly, 

the distance between binding sites varies by a single base pair in a-specific promoters 

(Mead et al., 1996).  For these two different spacings, structural studies reveal that a 

region of α2 that interacts with Mcm1 must adopt different conformations, causing a 

switch from an alpha helix to a beta-sheet (Tan and Richmond, 1998).  Thus, the 

rotational strain introduced by a single base pair insertion requires a rearrangement of the 

protein-protein interaction surface to maintain direct contact.  The rigidity of spacing 

constraints selects for a contiguous composite element, thus ensuring that individual 

binding sites occurring at random locations will not enable cooperative binding. 

DNA bending is a common feature of cell type promoter architecture, and may be 

required for full activation or repression.  The binding partners of α2 induce pronounced 

DNA bends.  The crystal structure of the a1-α2 complex bound to DNA revealed an 

overall bend of 60°, which was absent from the structure of α2 bound alone (Wolberger 

et al., 1991; Li et al., 1995).  Similarly, the crystal structure of Mcm1-α2 bound to DNA 

showed a bend angle of 72°, which facilitates protein-protein interactions (Tan & 
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Richmond 1998).  Whereas a crystal structure of the DNA-bound Mcm1-α1 complex has 

not been obtained, circular permutation assays of binding site sequences have shown that 

this complex of transcription factors bend DNA in vitro.  Point mutants in Mcm1 with 

reduced DNA bending fail to form ternary complexes with α1 and DNA in vitro and also 

reduce reporter gene activation over 10-fold in vivo (Lim et al., 2003; Carr et al., 2004). 

 

Promoter architecture requirements for co-activator recruitment are poorly understood 

Genetic and biochemical analyses have characterized the transcription factor 

network that regulates the expression of yeast sulfur utilization genes, which are involved 

in amino acid metabolism, cell cycle regulation and glutathione-mediated response to 

oxidative stress (Thomas and Surdin-Kerjan, 1997; Patton et al., 2000; Dormer et al., 

2000).  The cbf1, met4, met28 and met30 strains, as well as the met31 met32 double 

mutant, are methionine auxotrophs (Cai and Davis, 1990; Thomas et al., 1992; Thomas et 

al., 1995; Blaiseau et al., 1997; Cherest et al., 1997).  Deletion analysis of the MET17 

promoter showed that two sequences were necessary for transcriptional activation in 

response to low intracellular concentrations of S-adenosylmethionine (Thomas et al., 

1989).  These sequences correspond to binding sites for Cbf1 and the paralogs Met31 or 

Met32, and are also found in the promoters of many methionine biosynthetic enzymes 

(reviewed by Thomas and Surdin-Kerjan, 1997).  However, LexA fusions with Cbf1, 

Met31 or Met32 could not activate reporter genes placed downstream of LexA binding 

sites, indicating that these transcription factors lack activation domains (Thomas et al., 

1992; Blaiseau et al., 1997).  Rather, Met4 lacks a DNA-binding domain, but contains an 

activation domain, and is required for transcriptional activation downstream of Cbf1 or 
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Met31 or Met32.  Gel shift studies showed that Cbf1-Met28-Met4 could assemble in 

vitro on the upstream activating sequence from the MET16 promoter (Kuras et al., 1997).  

In addition, Met31-Met28-Met4 or Met32-Met28-Met4 complexes could assemble on 

sequences from the MET3 or MET28 promoters (Blaiseau and Thomas, 1998).  

Furthermore, yeast two-hybrid assays with truncation mutants revealed distinct regions of 

Met4 that mediate interaction with either Cbf1 or Met31 or Met32 (Blaiseau and Thomas, 

1998).  Taken together, these experiments suggest a model in which the co-activator 

Met4 is coordinately recruited by the transcription factors Cbf1, Met28, and Met31 or 

Met32 to the promoters of sulfur utilization genes (Figure 1.4).  Nevertheless, the 

distance constraints between Cbf1 and Met31 or Met32 binding sites have not been 

delineated. 

Several characteristics of sulfur utilization gene regulation render it an ideal 

model system to study how promoter architecture influences co-activator recruitment.  

Microarrays have identified a relatively large set of 25 genes that require Met4 for 

activation under sulfur limitation conditions (Fauchon et al., 2002).  Since the binding 

specificities for the transcription factors Cbf1 and Met31 or Met32 have high information 

content, high-affinity binding sites can be easily represented by consensus sequences.  In 

addition, transcriptional activation is easy to induce experimentally by withholding 

methionine from the growth media.  Finally, the mechanism for Met4 recruitment has 

been fairly well characterized experimentally. 

A comparison of sulfur and phosphate gene regulation exemplifies how 

multifactorial regulation can recognize distinct sets of target genes.  While both 

transcription factors are members of the basic helix-loop-helix family of transcription 
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Figure 1.4) Transcription factor regulatory network that regulates sulfur utilization 

genes in Saccharomyces cerevisiae 

 

 

 

 

 

 

Sulfur utilization genes, including methionine biosynthesis enzymes (MET genes), 

are de-repressed in response to low intracellular concentrations of S-adenosylmethionine.  

Two transcription factors collaboratively recruit the coactivator Met4 to these promoters.  

The basic helix-loop-helix transcription factor, Cbf1, binds as a homodimer to the 

consensus sequence, TCACGTG.  Met28 stabilizes Cbf1 binding to its consensus 

sequence.  In addition, the zinc finger transcription factor, Met31 or Met32, binds to its 

consensus, AAACTGTGGC, of which the last 6 bp represent the core binding sequence.  

General control for amino acid starvation by the transcription factor, Gcn4, is 

superimposed on the regulation of some sulfur utilization genes. 
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factors, Cbf1 induces a set of 25 genes in response to sulfur limitation, whereas Pho4 

induces a set of 18 genes in response to phosphate limitation (Ogawa et al., 2000; 

Fauchon et al., 2002).  The Cbf1 (TCACGTG) and Pho4 ([G/C]CACGTG) recognize 

different nucleotides immediately 5’ to the core CACGTG recognition sequence 

(Robinson and Lopes, 2000).  However, protein-protein interactions with different 

partners provide additional sequence information that discriminates the two sets of target 

genes.  As discussed above, Cbf1 interacts with Met31 or Met32 at the promoters of 

sulfur utilization genes, whereas Pho4 binds cooperatively with Pho2 at the promoters of 

genes activated by phosphate limitation.  Thus, unique binding site combinations and 

distance constraints between them combine to distinguish sulfur- and phosphate-

regulated targets, despite the involvement of transcription factors with overlapping 

sequence specificities. 
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SECTION 3.  THE VALUE OF PHYLOGENETIC COMPARISONS FOR UNDERSTANDING 

TRANSCRIPTIONAL REGULATION 

Researchers have long exploited sequence conservation to discover functional 

motifs in both coding and noncoding sequences, and numerous studies have noted that 

individual transcription factor binding sites are conserved.  Phylogenetic comparisons 

assume that the regulated expression of orthologous genes and the binding specificities of 

orthologous transcription factors are conserved.  Some experimental evidence suggests 

that these assumptions are valid for the four closely related yeast species used for 

comparative analyses.  A key goal of this work is to investigate whether promoter 

architecture is also subject to purifying selection.  Since interactions between 

transcription factors are functionally important, I expect that constraints on distances and 

sequence contexts between their binding sites should also be maintained by purifying 

selection.  In Chapter 3, I formulate explicit statistical tests to discover examples of 

multifactorial regulation in yeast based on the conservation of promoter architecture. 

 

Phylogenetic footprinting can discover regulatory sequences under purifying selection  

Orthologous sequences in different organisms are related by descent from a 

putative common ancestor, but may have accumulated random mutations from the time 

of divergence.  Mutations within functional regions would be deleterious to the organism 

and should disappear from the population by purifying selection if they are sufficiently 

detrimental.  An alignment of multiple orthologous sequences should reveal positions 

with lower mutation rates, thus corresponding to putative functional regions within the 

sequence (Figure 1.5). 
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Figure 1.5)  Conserved blocks in multiple sequence alignments correspond to 

putative functional regions 

 

Scer    CAGTTGTGGGGCCCGCCCGGCCCAATAG-GTAAAC--T---AAAAT-ACA 
Spar    CAGTTGTGGGG-----CCGGCCCAATAAAGTAAAC--T---CAAAT-ACA 
Smik    CAGTTGTGGGG----CCCGGCCAAATAAAGTCAAC----ATCGAATAACA 
Skud    CAGTTGTGGGG---GCCCGGCCCGATCGAGCAAACAATCCTAAAAACACA 
Sbay    CAGTTGTGGGGC-CGTC--------------------------------- 
    ***********     * 
 
Scer    ATAGAAGGG-GTAC---TGAGTGCACGTGACTTATTTT---TTT-TTTTT 
Spar    ATAGAGGGG-GTAC----GAGTGCACGTGACCGCAATT--------TGTT 
Smik    ATAGGAGTA-GAA---ACTACTGCACGTGACTCAATTT---CTGGTTTTT 
Skud    ATAGGAGCGTGTGCACGCGCGCTCACGTGACTGCAATTGCTCTGG--GGT 
Sbay    --------------------GGGCACGTGACCGGGTTTGGTTTGG----- 
       ********     **   
 
Scer    GGTTTTAGGTTTCGCTTTTT-TCA----CCTTTTTCTACTTTCTAACACC 
Spar    AGTCTATTTTTTATTTTTTTTCCA----CTTCTCTCTACTTTCTAACACC 
Smik    GGC-CTGGGATTCTCTATTTTTCC-CTTCTTCTCTCTGCTTTATAACACC 
Skud    GGGGGAGTGTTT-TTTTTCTTTCTTTCTCT-CTCTCTACTTTCCAACACC 
Sbay    ---------TTTGGGTTTTT-CC--------------------CGACACC 
                  **   * * *  *                      ***** 
 
Scer    ACAGTTTTGGGCGGGAAG--CGGAAA-CGCCATAGTT-GTAGGTCACTGG 
Spar    ACAGTTTTGGGCGGGAAG--CGGAAAACGCCATAGTT-GTAGGTCACCGG 
Smik    ACAGTTTTGGGCGGGAAA--CAAAAACCGCCATAGTT-GAAGGTCACTGG 
Skud    ACAGTTTTGCGCCCGAAGACCAAAAAACGCCATAGTT-GAAGGCCGCTGG 
Sbay    ACAGTTTTTGGG---------------CGCCATAGTTCGCAAGTCGCAG- 
        ********                   ********** * * * * * * 
 
Scer    CG--TGAGTCAAGGCCGGGCAGCCAATGACTAAGAACACGAGGTAACTTG 
Spar    CG--TGAGTCAAGGCCGGGCAGCCAATGACTAAGAACGCGAGGTAAATTG 
Smik    CGCGTGAGTCAAAGCCGGGCAGCCAATGACTAAGAAAAGGAAGTAAACTG 
Skud    CG--TGAGTCAAGGCCGGGCAGCCAATGACTAAGA-CGCGAGCTAAAATG 
Sbay    CG--TGAGTCAAGGCTGG-CAGCGAATGACTAAGG-CGCAAG--ACAACG 
        **  ******** ** ** ****************     *   *    * 
 
Scer    AATTTAACTATTTATAACCAGTGGTAGTTACGAAGACAAA---TTGTTTT 
Spar    GATTTAACTATTTATAATCAGTTATAGTTATGAAAACAAG---CCATTTT 
Smik    GATTGAACTATTTATAATCGGTTGCAGTTACAGAGAAAGA---TCCTTTT 
Skud    GGTTTGACTATTTATAATCGGCGGTAGTTACGAAGACAAGCGCTTCTGTT 
Sbay    GATTCGAGTATTTATAATCGGTGGTGGTTACGGGACGAGG---GCGGTTT 
          **  * ********* * *      ****       *         ** 
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Figure 1.5  (continued) 

A multiple sequence alignment for the intergenic region upstream of the MET28 

gene was generated with T-COFFEE (Notredame et al., 2000).  The alignment comprises 

orthologous sequences from S. cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), 

S. kudriavzevii (Skud) and S. bayanus (Sbay).  Due to the optimal evolutionary distance 

of this alignment, contiguous blocks of conserved sequences largely match consensus 

sequences for transcription factor binding sites: Met31 or Met32 (green, 

AA[C|T]TGTGG); Cbf1 (blue, CACGTGA); Gcn4 (orange, TGA[C|G]TCA); Yap1 (red, 

TGACTAA); and TATA box (black, TATAA). 
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Comparative analyses of protein sequences often identified conserved domains and 

residues that were necessary for protein function, such as catalysis, DNA binding, or 

phosphorylation (Vogel et al., 2004).  Conserved regions within noncoding sequences 

could represent a variety of functional elements, including transcription factor binding 

sites, noncoding RNAs and matrix attachment regions (reviewed by Duret and Bucher, 

1997; Cooper and Sidow, 2003). 

Phylogenetic footprinting approaches were first applied to orthologous regulatory 

regions within mammalian genomes (Tagle et al., 1988).  This term invokes the principle 

of experimental footprinting assays, in which a bound transcription factor protects its 

recognition site from enzymatic modification.  Analogously, the process of purifying 

selection is thought to prevent deleterious mutations from accumulating within a 

functional element.  The predictive power of phylogenetic footprints in identifying 

transcription factor binding sites was first tested for the γ-globin gene (Gumucio et al., 

1996).  Among 13 phylogenetic footprints identified, 12 could be bound by specific 

transcription factors in vitro, whereas only 2 of 9 non-conserved regions showed this 

property.  Similar studies have been conducted using comparisons between human and 

mouse orthologs (Loots et al., 2000) or even among human, mouse and pufferfish 

orthologs (Aparicio et al., 1995). 

 

Key assumptions and limitations of phylogenetic footprinting 

The simplest implementations of phylogenetic footprinting define functional 

regions as contiguous blocks of aligned residues that are perfectly identical among all 

species.  Software tools such as VISTA and PipMaker generate visual representations of 
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sequence conservation from a user-specified alignment (Loots et al., 2002; Schwartz et 

al., 2000).  Nevertheless, these simple methods share a fundamental caveat: conserved 

residues within an alignment are not necessarily under purifying selection.  Instead, these 

conserved residues represent a mixture of residues under selection, as well as residues 

with shared descent that have had insufficient time for mutations to accumulate. 

Two key parameters can affect the efficacy of phylogenetic footprinting 

approaches.  First, the sequence alignment must be correct, meaning that residues within 

each column of the alignment are homologous among the different species.  Secondly, 

the species tree must span sufficient evolutionary distance for random mutations to 

accumulate within the nonfunctional positions (Cooper and Sidow, 2003).  Pairwise 

alignments of closely related species will not have sufficiently diverged for enough to 

identify residues under purifying selection.  However, sequences that are too divergent 

are notoriously difficult to align correctly, due to the high frequency of insertions, 

deletions and inversions within noncoding DNA (Pollard et al., 2004).   

Phylogenetic footprinting of transcriptional control regions makes two key 

assumptions about selection pressures on gene expression.  These assumptions are 

assumed to be true for closely related species, but several examples demonstrate that 

these assumptions may not be valid at longer evolutionary distances.  First, phylogenetic 

footprinting assumes that orthologous genes retain similar patterns of transcriptional 

regulation in response to the same environmental conditions.  However, microarray 

studies of mating in Candida albicans and cell cycle regulation in Schizosaccharomyces 

pombe have revealed considerable differences in gene expression with orthologs in S. 

cerevisiae (Tsong et al., 2003; Rustici et al., 2004).  Second, phylogenetic footprinting 
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assumes that the sequence specificities of transcription factor orthologs are relatively 

invariant among the species under consideration.  Yet transcription factor orthologs can 

sufficiently diverge in their DNA recognition domains such that their binding 

specificities are slightly altered.  For instance, orthologs of the zinc finger transcription 

factor, Rpn4, from Candida albicans and S. cerevisiae showed different binding 

specificities in vitro (Gasch et al., 2004).  

 

The genome sequences of several ascomycete fungi have been recently completed 

The availability of complete genome sequences enabled systematic investigations 

of purifying selection on yeast regulatory sequences.  Genome sequences from four 

closely related Saccharomyces sensu stricto were recently completed: S. paradoxus, S. 

mikatae, S. kudriavzevii, and S. bayanus (Figure 1.6) (Cliften et al., 2003; Kellis et al., 

2003).  These four species are similar enough to S. cerevisiae that they have a similar 

karyotype and can form stable diploids (Cliften et al., 2001).  Since these species are 

physiologically similar, it is assumed that the same selection pressures have operated on 

the regulatory sequences of orthologous promoters.  Nevertheless, some differences in 

nutritional capabilities are observed among these species that could correspond to 

different selective pressures imposed by their respective ecological niches.  Most notably, 

S. kudriavzevii is unable to utilize galactose, since mutations have inactivated all genes of 

the GAL pathway (Hittinger et al., 2004). 
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Figure 1.6) Phylogenetic tree of Saccharomyces sensu stricto species 

 

 

substitutions per site 

Phylogenetic comparisons in this work focus on five closely-related 

Saccharomyces species, which can form stable diploids: S. cerevisiae, S. paradoxus, S. 

mikatae, S. kudriavzevii and S. bayanus.  Branch lengths represent the median number of 

substitutions per site in alignments of intergenic regions, inferred by PAML. 
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Alignments of the sensu stricto yeast species spanned a satisfactory evolutionary 

distance for phylogenetic footprinting.  Pairwise alignments of intergenic regions with S. 

cerevisiae averaged between 60% and 71% identity at the nucleotide level, depending on 

the species (Leonid Teytelman, UC Berkeley, personal communication).  The vast 

majority of multiple sequence alignments for intergenic regions were high of quality, 

with contiguous regions of identical columns that could be easily distinguished from 

mutations within flanking sequences.  Due to the ease of identifying conserved sequence 

blocks, as well as the relative large evolutionary distance spanned by the multiple species 

tree, I used a simple implementation of phylogenetic footprinting to search for conserved 

sequence elements.  Separate work identified over 80 consensus sequences – some of 

them corresponding to known transcription factor specificities – by searching for 

common conserved footprints in related groups of genes (Cliften et al., 2003; Kellis et 

al., 2003).  This success in discovering known consensus sequences strongly implies that 

some transcription factor binding specificities have been maintained across these yeast 

species. 

High coverage shotgun sequencing has also been conducted on ascomycete fungi 

as close as Saccharomyces castellii and as distant as Schizosaccharomyces pombe (see 

references in Gasch et al., 2004).  However, all of these species are too distant to obtain 

reliable pairwise noncoding DNA alignments with S. cerevisiae.  Several of these species 

also exhibited some major morphological and physiological differences, which may 

correspond with underlying changes in regulatory sequences (Gasch et al., 2004).  I thus 

focused my analyses on the five closely-related sensu stricto species. 
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SECTION 4.  COMPUTATIONAL MODELS OF CIS-REGULATORY INFORMATION 

A fundamental computational challenge is to predict groups of genes that are 

expressed under specific environmental conditions.  Computational models must 

incorporate relevant transcription factors, as well as promoter architectures that govern 

interactions between them.  This section will begin with sequence models for 

transcription factor binding sites, which are the basic unit of regulatory information.  

Next, I will provide an overview of the formalism of information theory, which quantifies 

the binding specificity of transcription factors.  Finally, I will discuss the strengths and 

weaknesses of various computational approaches for promoter classification. 

Since the vast majority of predicted binding sites are not associated with control 

of gene expression, additional information must be required to distinguish the 

physiological targets of a given transcription factor.  Some of this information is provided 

by binding sites for multiple transcription factors.  Thus, I propose promoter architecture 

as a framework for dissecting distance constraints that govern multifactorial control.  

Whereas previous computational analyses have used heuristic distance cutoffs, few 

general formalisms have been developed to account for the regulatory logic encoded by 

multiple transcription factor binding sites (Buchler et al 2003; Istrail & Davidson, 2005).  

In Chapter 3, I will present a statistical method to evaluate whether conserved binding 

sites are closer than expected by chance.  My experimental characterization of distance 

constraints between a specific pair of yeast transcription factors will be discussed in 

Chapter 4.  By incorporating organizational principles of regulatory sequences, I aim to 

glean insights into the underlying biological process of transcription initiation. 
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Sequence models for transcription factor binding specificities 

Transcription factors specifically recognize similar DNA sequences 

The DNA-binding domain of a given transcription factor typically recognizes a 

range of similar sequences.  This recognition is usually mediated by hydrogen bonds and 

van der Waals contacts between individual nucleotides and amino acid side chains of 

transcription factors.  Crystal structures showed that only a subset of nucleotides within a 

binding site interact specifically with a transcription factor; at other positions, different 

nucleotides can be tolerated (Luscombe et al., 2000).  Strikingly, positions with lower 

nucleotide degeneracy correlate with increased hydrogen bonding and van der Waals 

contacts with transcription factor side chains (Mirny and Gelfand, 2002).  Binding sites 

that are recognized by the same transcription factor often show extensive variability, 

sometimes even within nucleotides that make direct contacts with transcription factor 

side chains.  This variability may alter binding site affinity, thus enabling differential 

regulation at various promoters.  For instance, high-affinity binding sites would have 

higher levels of transcription factor occupancy than low-affinity binding sites.  By 

varying binding site affinities, different transcription control regions could be activated at 

different levels of a transcription factor gradient, as with the case for the dorsal-ventral 

patterning in Drosophila melanogaster (Rusch and Levine, 1996).  

 

Experimental methods for compiling transcription factor binding sites or co-regulated 

genes 

Several experimental techniques can be used to compile binding sites for a 

particular transcription factor.  DNase I footprinting exploits the fact that a bound 
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transcription factor protects nucleotides that are buried in the protein-DNA interface from 

modification by other proteins (Galas and Schmitz, 1978).  When incubated with a 

transcription factor, nucleotides that are resistant to cleavage by partial DNase I treatment 

thus represent a binding site for that transcription factor.  Another method to assay 

protein-DNA interactions in vitro is an electrophoretic mobility shift assay (Garner and 

Revzin, 1981).  Since protein-DNA complexes have a higher molecular weight than free 

DNA, radiolabeled oligonucleotides containing a binding site will migrate more slowly 

through a polyacrylamide gel when pre-incubated with a transcription factor.  The 

binding affinities of different sequence variants can be compared by titrating out protein-

DNA complex formation with increasing amounts of unlabeled DNA.  Finally, binding 

specificities of transcription factors can be ascertained by in vitro selection (Oliphant et 

al., 1989; Pollock and Treisman, 1990).  Pools of random oligonucleotides can be passed 

over a transcription factor affinity column.  Sequences that bind to the column with high 

affinity can be eluted and recycled through the column.  After several rounds of selection, 

the resulting DNA sequences represent high-affinity binding sites for the transcription 

factor.  Transcription factor binding specificities from these various assays have been 

compiled in several online databases, such as TRANSFAC (Matys et al., 2003), SCPD 

(Zhu and Zhang, 1999) and JASPAR (Sandelin et al., 2004). 

Global gene expression profiling experiments can identify genes that are likely to 

be co-regulated, but do not precisely map transcription factor binding sites.  For example, 

high-throughput measurements of gene expression can be obtained by RNA extraction, 

fluorescent labeling of reverse transcripts and hybridization to an array of oligonucleotide 

probes that are specific for different genes or genomic regions (Brown and Botstein, 
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1999).  Hierarchical clustering can reveal groups of genes with highly similar expression 

patterns across multiple treatments (Eisen et al, 1998).  Assuming that co-expressed 

genes are regulated by a common set of transcription factors, binding sites for those 

proteins are expected to be found in the relevant promoters or enhancers associated with 

those genes.  Another method to detect co-regulated genes is chromatin 

immunoprecipitation (Taverner et al., 2004).  In this method, transcription factors are 

cross-linked to DNA in vivo and isolated.  Chromatin is sheared and antibody 

immunoprecipitation is used to recover DNA fragments bound by the transcription factor.  

After crosslink reversal and PCR amplification, hybridization of DNA fragments to a 

microarray spotted with intergenic DNA identifies genomic regions that are bound by a 

transcription factor in vivo.  Both of these methods generate a list of putatively regulated 

sequences that are predicted to contain binding sites for one or more transcription factors.  

The goal of computational methods is to predict both the sequences and start positions of 

these binding sites. 

 

Computational models of transcription factor binding specificities 

A consensus binding specificity of a transcription factor can be inferred from a 

multiple sequence alignment of its mapped and putative binding sites.  Consensus 

sequences are the simplest representations of transcription factor sequence preference 

(Figure 1.7).  At each position, the consensus sequence comprises the most frequent 

nucleotide(s) found in the alignment.  The most stringent positions contain one 

nucleotide, whereas more degenerate positions allow multiple nucleotides.  Although 

consensus sequences are easy to generate, they have limited quantitative value in scoring  
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Figure 1.7) Representations of transcription factor binding specificity 

 

GTGAGTCAC 
CTGAGTCAT 
ATGAGTCAT 
ATGAGTCAC 
ATGACTCAT 
ATGAGTCAA 
ATGACTCAT 
GTGAGTCAT 
ATGAGTCAT 
TTGACTCAT 
ATGACTCAT 
ATGAGTCAT 
ATGAGTCAT 
CTGACTCAT 
GTGACTCAT 
GTGAGTCAT 
ATGAGTCAT 
GTGACTCAC 
ATTAGTCAT 
CTGACTCAG 
 
 
Consensus sequence: 
 
ATGACTCAT 
G   G   C 
 

A multiple sequence alignment of 20 binding sites is displayed at left.   The most 

frequent nucleotides at each position comprise the consensus sequence.  (A) Nucleotide 

counts can also be represented in a frequency matrix.  (B) A frequency matrix can be 

converted to a position weight matrix using equation (1), where fb,i represents the 

frequency of nucleotide b in column i, and pb represents the genome frequency of 

nucleotide b. In the S. cerevisiae genome, pA = pT = 0.31 and pC = pG = 0.19.  To avoid 

taking logarithms of zero, one pseudocount was added to each cell of the frequency 

matrix.  The information content at each position (Iseq) is given by equation (2).

(A)  Frequency matrix 
 
A 11 0 0 20 0 0 0 20 1
C 3 0 0 0 8 0 20 0 3
G 5 0 19 0 12 0 0 0 1
T 1 20 1 0 0 20 0 0 15
 
 
 
(B)  Position weight matrix (log-odds matrix) 
 
A 0.7 -2.9 -2.9 1.5 -2.9 -2.9 -2.9 1.5 -1.9
C -0.2 -2.2 -2.2 -2.2 1.0 -2.2 2.2 -2.2 -0.2
G 0.4 -2.2 2.1 -2.2 1.5 -2.2 -2.2 -2.2 -1.2
T -1.9 1.5 -1.9 -2.9 -2.9 1.5 -2.9 -2.9 1.1
Iseq 0.2 1.0 1.4 1.0 1.0 1.0 1.6 1.0 0.5
 
 

Wb,i = log2
fb,i

pb
   (1) 

 
 

Iseq (i) = fb,i log2
fb,i

pbb
∑   (2) 
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new sequences as putative binding sites.  Intuitively, mismatches in conserved positions 

should be less tolerated than mismatches at degenerate positions.  However, consensus 

sequences provide no formalism for distinguishing the relative effects of mismatches 

using consensus sequences. 

Position weight matrices provide a better representation of binding energies 

between transcription factors and DNA.  Instead of a rigid consensus sequence, each 

column of a position weight matrix models the conditional probability distribution of 

finding an adenine, cytosine, guanine or thymine at each position of the binding site 

alignment (reviewed by Stormo, 2000).   These probabilities are converted to log-odds 

ratios in order to make scores from different positions additive, as well as to normalize 

against the overall base composition of a given genome (Figure 1.7).  Statistical 

mechanics theory links these log-odds ratios with the contribution of individual 

nucleotides to binding energies (Berg and von Hippel, 1987).  Thus, the affinity of any 

particular sequence for a transcription factor can be scored as the sum of binding energies 

at each nucleotide position.  Position weight matrices also make several simplifying 

assumptions that might not always be valid: different positions contribute additively to 

binding energy; background nucleotide frequencies are independent and identically 

distributed; all binding sites are equally accessible; and transcription factor binding to 

DNA is at equilibrium in vivo. 

 

Computational discovery of potential transcription factor binding sites 

The consensus sequence representation provides a simple way to predict 

sequences of transcription factor binding sites.  The general principle is to enumerate all 
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possible DNA “words” of a fixed length; for instance, there are 4096 (46) unique DNA 

hexamers.  For each individual word, its observed frequency in the set of regulated 

promoters can be compared with its expected frequency, assuming that genome 

sequences are random.  Binomial or hypergeometric tests can evaluate whether a 

particular word is statistically enriched in the regulated sequences.  These enriched words 

represent putative transcription factor binding sites.  Furthermore, highly related words 

can overlap and thus be compiled into consensus sequences, which often correspond to 

known transcription factor binding specificities.  Several groups have used these 

approaches to identify binding sites in the promoters of co-regulated yeast genes (van 

Helden et al., 1998; Brazma et al., 1998; Sinha and Tompa, 2000). 

Position weight matrix representations of enriched sequences can also be deduced 

by computational methods.  A position weight matrix of length L consists of 4 × L 

parameters, i.e. the negative log-odds of each nucleotide at each position.  These 

parameters can be optimized using an iterative refinement procedure.  Initially, randomly 

chosen start positions are used to build a position weight matrix.  In each subsequent 

round, these methods calculate the posterior probability that each position in a regulated 

sequence represents the start of a transcription factor binding site.  These probabilities are 

used to select a new instance of a binding site, either deterministically or stochastically, 

and the position weight matrix parameters are updated.  Over multiple iterations, there is 

a chance that an actual binding site will be incorporated in the position weight matrix 

model, thus biasing future search rounds for that transcription factor.  These algorithms 

usually converge on a local minimum that corresponds to an enriched sequence motif.  

Some popular implementations of this approach include MEME (Bailey and Elkan, 
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1995), GibbsDNA (Lawrence et al., 1993), AlignACE (Hughes et al., 2000a), and 

BioProspector (Liu et al., 2001).  The first method uses an expectation-maximization 

approach, whereas the remaining methods are variants of stochastic Gibbs sampling. 

 

Exploiting comparative genomics for motif discovery 

Comparative genomics can provide a filter for discovering sequence motifs that 

are more likely to represent transcription factor binding sites, since evolutionary selection 

for retention of function should reduce the number of mutations accumulating within sites 

that are physiologically important in vivo (Moses et al., 2003).  Several methods use 

evolutionary models to infer the rate of sequence evolution at all positions in a multiple 

sequence alignment of orthologous regulatory regions (Boffelli et al., 2003; Wang and 

Stormo, 2003; Moses et al., 2004; Prakash et al., 2004).  These methods search for 

sequences that show enrichment among a set of input sequences, as well as lower 

mutation rates than the flanking sequence context within multiple alignments.  By 

explicitly modeling the common ancestry of orthologous sequences, these methods have 

been shown to perform better than motif discovery algorithms developed for single 

genomes. 
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Discriminating target genes regulated by transcription factors 

Information content quantifies the contribution of individual positions to binding 

specificity  

The information content at a particular position in a binding site predicts its 

relative contribution to transcription factor specificity.  Information content is inversely 

related to the statistical entropy at a position (Stormo, 2000): 

Iseq (i) = fb,i log2
fb,i

pbb
∑  

where fb,i represents the frequency of nucleotide b at position i in the position weight 

matrix, and pb represents the frequency of nucleotide b in the whole genome.  Positions 

with zero information content have equal nucleotide probabilities, whereas positions with 

the highest information content only allow one nucleotide, which indicates specific 

recognition between that nucleotide and a transcription factor side chain (Mirny and 

Gelfand, 2002).  

An interesting connection between information content and evolutionary 

constraints based on phylogenetic comparisons was recently demonstrated in yeast 

(Moses et al., 2003).   Experimentally characterized transcription factor binding sites 

were compiled from the SCPD database (Zhu and Zhang, 1999) and used to construct 

position weight matrices.  These matrices thus reflect the within-genome variability at 

any position within a binding site.  Orthologs to these annotated binding sites were then 

extracted from multiple sequence alignments constructed from three additional 

Saccharomyces sensu stricto species (Kellis et al., 2003).  At each position in a binding 

site, the minimal number of sequence changes along the species tree was calculated by 

parsimony (Moses et al., 2003).  Strikingly, the rate of substitutions at a particular 
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position was inversely correlated with the information content at that position.  In 

addition, positions with high information content and few evolutionary substitutions were 

often contacted directly by transcription factor side chains.  Assuming that the 

transcription factor sequence specificities are unchanged over these short evolutionary 

distances, this analysis implies that similar selection pressures govern the within-genome 

and between-genome variability of transcription factor binding sites. 

 

Physiological targets of a transcription factor differ from predicted high-affinity binding 

sites 

The total information content of a position weight matrix can predict the 

frequency of binding site occurrences in the entire genome, under a model that all 

sequences occur with equal frequencies.  Only a small fraction (usually less than 20%) of 

these predicted binding sites show evidence of transcription factor binding and 

subsequent changes to gene expression when tested experimentally.  Several associations 

between genomic datasets and predicted binding sites in transcriptional control regions 

support this observation.  First, microarray analyses revealed that the vast majority of 

computationally predicted binding sites in yeast promoters do not correspond with 

expected changes in gene expression.  For example, the basic helix-loop-helix 

transcription factor, Pho4, activates gene expression in response to low phosphate 

conditions.  At least one perfect match to the Pho4 consensus sequence, CACGTG, can 

be found in 376 yeast promoters, defined as the 600 bp upstream of translation start.  

However, only 12 genes are consistently activated under low phosphate conditions, or 

about 3% of all genes with at least one predicted Pho4 binding sites (Figure 1.8) 
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Figure 1.8) Physiologically regulated targets represent a subset of predicted 

transcription factor binding sites 
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Figure 1.8  (continued) 

Gene expression data is displayed for 376 genes that contain an E box motif 

(CACGTG) within 600 bp upstream of their translation start sites.  Each row represents a 

different gene, whereas each column represents a different microarray that probed low 

phosphate conditions (Ogawa et al., 2000) or cadmium treatment in wild-type and met4 

deletion strains (Fauchon et al., 2002).  Green pixels correspond to transcriptional 

repression, red pixels correspond to transcriptional induction, and the pixel intensity 

reflects the magnitude of the change in average gene expression.  (A) A subset of 12 

genes are induced in response to low phosphate by the transcription factor Pho4.  (B) A 

subset of 26 genes are induced in response to cadmium treatment in a Met4-dependent 

manner by the transcription factor Cbf1. 
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(Ogawa et al., 2000).  Second, systematic chromatin immunoprecipitation studies have 

revealed that less than 20% of predicted binding sites are occupied by the corresponding 

transcription factor in vivo (Iyer et al., 2001).  Taken together, these data suggest that 

transcription factors bind a small subset of computationally predicted sites in vivo. 

Several mechanisms may account for the higher selectivity of in vivo targets, 

compared with predicted in vitro binding specificities.  Cooperative binding or 

synergistic activation may require nearby binding sites for two or more transcription 

factors.  Therefore, promoters that contain a predicted binding site for only one 

transcription factor may not bind that protein or stimulate the recruitment of multiprotein 

regulatory complexes as efficiently.  For instance, activation of the PHO5 promoter 

requires adjacent binding sites for the transcription factors, Pho4 and Pho2 (Barbaric et 

al., 1998).  This promoter also exemplifies another mechanism for in vivo selectivity: the 

protection of high-affinity binding sites by nucleosomes (reviewed by Svaren and Horz, 

1997, Struhl, 1999).  Due to our limited knowledge of nucleosome positioning sequences, 

it is difficult to computationally predict whether putative transcription factor binding sites 

are buried or accessible in vivo.  Another mechanism for in vivo selectivity of binding 

sites may involve local concentration gradients of transcription factors.  In this model, 

several low-affinity binding sites should be found in the vicinity of a high-affinity 

binding site that is occupied in vivo.  These low-affinity sites would increase the local 

concentration of a transcription factor as it scans DNA, thus increasing its probability of 

retention at that locus.  
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Promoter architecture can be inferred from an input set of co-expressed genes 

Recognizing sequence patterns in the cis-regulatory code 

A key problem is to decipher how the elements and organization of transcriptional 

control regions specify changes in gene expression in response to particular environments 

or cell types.  In other words, we want to discover the particular promoter architecture 

that is sufficient to recapitulate a given pattern of gene expression.  Promoter architecture 

can be inferred by statistical analyses of promoter sequences and co-regulated genes.  The 

input to these algorithms includes a list of co-regulated genes, as well as a list of 

transcription factor binding specificities.  These lists can be specified in advance or 

predicted by the algorithm.  Each algorithm adopts its own definition of promoter 

architecture, which usually comprises a list of transcription factors, the relative affinities 

of their binding sites and the distance constraints between binding sites.  These 

parameters are optimized to include all examples from the training set of co-regulated 

genes.  Various algorithms use different criteria to optimize models of promoter 

architecture.  Template methods extrapolate sequence features from a small set of 

transcriptional control regions with experimentally mapped transcription factor binding 

sites.  Structured motif discovery methods search for sequence pairs and distance 

constraints that discriminate a user-specified set of co-regulated genes from the rest of the 

genome.  The resulting model of promoter architecture can then be used to predict other 

co-regulated genes in the genome. 
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Template methods extrapolate from mapped binding sites in transcriptional control 

regions 

Since a set of transcription factors often regulates multiple target genes, the 

careful experimental dissection of a single transcriptional control region can be used as a 

query for discovering other co-regulated genes.  These methods initialized a promoter 

architecture template with the sequences and distance constraints between mapped 

transcription factor binding sites in promoters of human genes (Klingenhoff et al., 1999; 

Werner et al., 2003).  Genome-wide searches found instances of this template in other 

proximal promoters.  Genes with similar functional annotations to the query sequence 

were then included in an expanded training set.  The template’s sequence affinities and 

distance constraints were adjusted to include all examples within the training set.  

Although this refined template predicted other co-regulated genes, regrettably none of 

these predictions were experimentally verified for gene expression similarity. 

In a similar approach, a template for neurogenic ectoderm expression in 

Drosophila melanogaster was summarized from four experimentally characterized 

enhancers (Erives and Levine, 2004).  These enhancers shared binding sites for the 

transcription factors, Twist and Dorsal, as well as an additional sequence motif.  The 

sequence template used a maximal distance of 20 bp between Twist and Dorsal binding 

sites, as well as a maximal distance of 150 bp between Twist and the novel sequence 

element.  A search of the mosquito (Anopheles gambiae) genome found a template match 

near the ortholog to the vnd target gene.  This match is striking because sufficient 

mutations and insertions have accumulated to make the orthologous intergenic regions 

unalignable.  This predicted sequence region from Anopheles was sufficient to drive 
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expression in the neurogenic ectoderm of Drosophila embryos.  Notably, this study 

suggested that promoter architecture may be conserved even among distant species. 

Since sequence templates are typically trained on a handful of genes, they may be 

prone to computational overfitting.  In other words, these template models may fail to 

capture the full spectrum of transcription factor combinations that can generate a 

particular gene expression pattern.  For instance, a survey of skeletal muscle gene 

expression identified six transcription factors that were involved in regulation 

(Wasserman and Fickett, 1998).  Since different transcription factor combinations were 

used at various promoters, no single sequence template could successfully predict all 

muscle-specific genes.  To provide a larger sample of co-expressed genes for model 

cross-validation, computational methods could analyze sets of co-expressed genes 

identified by genome-wide expression experiments. 

 

Structured motifs can be discovered from a group of co-expressed genes 

For cases where the relevant transcription factors are unknown, computational 

tools have been developed to search for structured sequence pairs.  These tools are 

extensions of motif discovery methods to find individual transcription factor binding 

sites.  These methods modify their objective functions to search for two sequences 

simultaneously, often imposing a distance range between them.  For instance, the 

enumerative approach of finding enriched consensus sequences was modified to search 

for two sequences with a fixed spacing between them (van Helden et al., 1998).  Other 

researchers have exploited a suffix tree data structure to compile putative consensus 

sequences that are separated by a range of distances (Marsan and Sagot, 2000; Eskin and 
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Pevzner, 2002).  Gibbs sampling methods have also been altered to search for two 

position weight matrices that are separated by a distance range (Liu et al., 2001; 

GuhaThakurta and Stormo, 2001).  Finally, hidden Markov models can be trained to 

search for ordered pairs of transcription factor binding sites (Pavlidis et al., 2001).  Since 

these tools focus solely on sequence pattern discovery, they are best used for analyzing 

groups of co-expressed genes from high-throughput gene expression data.  If discovered 

sequences correspond to known specificities of transcription factors, one could test 

whether those transcription factors directly regulate the group of co-expressed genes.  

Whereas these tools use close spacing as a test condition for transcription factors that 

may bind cooperatively, they simply summarize the range of distances present in the 

input sequences.  Therefore, these methods do not make explicit predictions about 

distance constraints between binding sites. 

 

Statistical filtering of binding site combinations for similar expression 

Evaluating gene expression similarity for target genes that share similar features 

All of the computational methods considered so far use a group-by-expression 

approach.  These methods start from a set of co-expressed genes, and then search for 

enriched sequence features in their transcriptional control regions.  Conversely, group-by-

sequence approaches can systematically assess the regulatory information associated with 

an arbitrary sequence feature, such as an individual motif or a pair of sequences.  These 

methods first search for groups of genes that contain a shared sequence feature in their 

transcriptional control regions.  Each gene group can then be statistically evaluated for a 

higher similarity in gene expression than expected by chance.  Significant sequence 
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features are thus predicted to be regulatory elements for that gene group.  Note that an 

advantage of these methods is their ability to discover groups of co-regulated genes. 

Transcription factor interactions can be inferred by enumerating pairs of 

transcription factors and evaluating for gene expression similarity among the predicted 

target genes.  A pioneering study compiled 329 position weight matrices for known or 

predicted transcription factors and associated a gene group with each possible pair of 

transcription factors (Pilpel et al., 2001).  The expression coherence metric for gene 

expression similarity was defined as the average Euclidean distance, in the log space of 

gene expression ratios, between all pairs of genes in the gene group.  Transcription factor 

pairs were inferred to interact if their target genes showed a higher expression coherence 

value than expected, based on random sampling from the target genes of individual 

transcription factors.  Fifteen examples were discovered for which both transcription 

factors were known; additional pairs were also reported with only one known 

transcription factor.  Nearly 20% of these pairs showed a statistically significant 

preference in the order of predicted binding sites.  This study also reported only one 

sequence pair with close spacing preferences: the PAC and RRPE elements found in the 

promoters of ribosomal RNA transcription and processing genes that are repressed in 

multiple environmental stress conditions (Hughes et al., 2000a; Gasch et al., 2000). 

 

Predicting gene expression patterns from sequence features 

We can assess our understanding of transcriptional regulation by attempting to 

predict gene expression data from sequence data (Bussemaker et al., 2001; Keles et al., 

2002; Conlon et al., 2003).  First, all possible sequences of a given length are 
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enumerated.  Each sequence can be evaluated for its regulatory potential by correlating its 

number of occurrences in promoter regions with the corresponding gene’s expression 

change.  For instance, sequences that occur more frequently in the promoters of induced 

genes could be binding sites for activating transcription factors.  Conversely, sequences 

that are enriched in the promoters of repressed genes could be recognized by repressive 

transcription factors.  The slope of the correlation represents the average regulatory 

contribution of that sequence to gene expression.  The most significant word can be 

added to a regression model that predicts gene expression ratios based on the occurrences 

of various sequences in promoter regions.  After multiple rounds of data fitting, this 

procedure generates a list of regulatory sequences, their predicted contribution to 

activation or repression, and the overall fit of the model.  Sequences selected in these 

models generally explain less than 20% of gene expression changes (Conlon et al., 2003).  

The performance of these models is hampered by random instances of regulatory 

sequences that are not bound by transcription factors in vivo.  By using sequence 

conservation as a filter for instances of regulatory sequences that are non-functional, 

regression model fits significantly improve (see Chapter 3). 

 

Physical proximity of predicted binding sites may suggest transcription factor interactions 

As discussed previously, the close spacing of binding sites may be required for 

cooperative binding or the efficient recruitment of multiprotein regulatory complexes.  

Methods that evaluate the proximity of predicted binding sites could potentially identify 

transcription factor interactions.  After predicting all binding site occurrences in a single 

genome, various statistical tests can evaluate whether the binding sites for any given pair 
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of transcription factors are more closely spaced than expected by chance.  For instance, 

binding sites for Mcm1 or Ste12 alone were found to be randomly distributed in the yeast 

genome, using an inhomogenous Poisson distribution as a background spacing model 

(Wagner, 1999).  Fourteen promoters contained closely-spaced binding sites, suggesting 

joint regulation by these two transcription factors.  However, only 5 of these 14 genes 

were shown to be induced in response to alpha factor in a microarray study (Roberts et 

al., 2000). 

A study of human transcription factors in the TRANSFAC database reported 191 

transcription factor pairs whose binding sites were enriched for co-localization within a 

20-bp window, as assessed by a chi-square test for the occurrence of individual binding 

sites (Qiu et al., 2002).  By comparing their predictions to experimentally verified 

interactions in the COMPEL database, the authors report a high false negative rate of 

62% (Kel-Margoulis et al., 2002b).  Another similar study reported 321 pairs that co-

localized within a 50-bp or 200-bp window with higher chi-square scores than known 

interactions in the COMPEL database (Hannenhalli and Levy, 2002).  Literature searches 

on a sample of 100 predicted interactions revealed support for 39 predicted interactions, 

of which 15 involved protein-protein interactions between the transcription factor pair.  

These analyses could be improved by optimizing the model parameters, namely the 

distance between binding sites and the similarity score of predicted binding sites to 

transcription factor position weight matrices.  Nevertheless, these studies demonstrate 

that the physical proximity of binding sites can be a useful parameter for the discovery of 

authentic transcription factor interactions. 
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Distance constraints, along with sequence combinations, were explicitly tested in 

another sequence-based search for yeast transcription factor interactions (Beer and 

Tavazoie, 2004).  After training 615 position weight matrices from 49 clusters of co-

expressed genes, the authors searched for combinations of predicted binding sites that 

could classify genes back into their 49 expression clusters.  While this procedure suffered 

from circularity and overfitting, it did explicitly test whether several distance constraints 

improved the accuracy of predictions: the distance of individual sites to translation start 

in 20 bp windows; the orientation of individual sites; copy number; and distances 

between pairs of predicted binding sites.  Only one example of distance constraints 

between binding sites was discussed: the PAC element was predicted to occur up to 100 

bp upstream of the RRPE element. 

 

Future directions for computational models of multifactorial regulation 

I have reviewed computational approaches that explicitly model the effects of 

multiple transcription factor binding sites on gene expression.  Whereas current models 

can be useful in identifying putative regulatory sequences, they make a couple of key 

assumptions that fail to incorporate biological knowledge of multifactorial regulation.  

Since these models assume that regulatory sequences act independently, they fail to 

account for synergistic interactions between transcription factors.  One extension of this 

method is to evaluate whether pairwise interaction terms between sequences also 

significantly correlate with gene expression (Keles et al., 2002).  These methods also 

assume that all positions within promoter regions are equivalent.  However, distances 

between binding sites to the translation start site or to other binding sites have been 
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demonstrated to influence gene regulation.  Thus, the fidelity of computational models to 

biological mechanisms would be improved by explicitly modeling distance effects. 

Although computational approaches can detect global trends between regulatory 

sequences and gene expression, they seldom make predictions about specific systems.  

For example, the regression models described above identified only one pair of 

regulatory sequences in yeast that may be governed by close spacing.  The relatively 

small sizes of co-regulated gene groups – which typically include fewer than 30 yeast 

genes – may not provide enough statistical power to detect enriched sequence features.  

Nevertheless, sequence analyses alone cannot distinguish whether the relevant 

transcription factors interact by direct protein-protein interactions or by an indirect 

mechanism, such as collaborative recruitment or nucleosome occlusion.  These 

limitations underscore the need for experiments to test computational predictions. 
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PREFACE 

Computational analyses of transcription control regions must include a method to 

evaluate the influence of any given regulatory sequence on gene expression.  In this 

chapter, I describe such a method that assesses the statistical significance of the average 

gene expression change among genes that share a particular DNA sequence in their 

upstream regions.  As a proof of principle, analyses of previously published gene 

expression datasets shows how this method can identify sequences that correspond to 

transcription factor binding sites in yeast. 

This chapter appeared in 2001 as an article by myself, Pat Brown and Mike Eisen 

in the journal Bioinformatics, volume 17, pages S49-S55.  Further GMEP analyses of the 

Rosetta compendium microarray data are reported for the first time in Table 2.2. 
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ABSTRACT 

The combination of genome-wide expression patterns and full genome sequences 

offers a great opportunity to further our understanding of the mechanisms and logic of 

transcriptional regulation.  Many methods have been described that identify sequence 

motifs enriched in transcription control regions of genes that share similar gene 

expression patterns.  Here we present an alternative approach that evaluates the 

transcriptional information contained by specific sequence motifs by computing for each 

motif the mean expression profile of all genes that contain the motif in their transcription 

control regions.  These genome mean expression profiles (GMEP’s) are valuable for 

visualizing the relationship between genome sequences and gene expression data, and for 

characterizing the transcriptional importance of specific sequence motifs.  Analyses of 

GMEP’s calculated from a dataset of 519 whole-genome microarray experiments in 

Saccharomyces cerevisiae show a significant correlation between GMEP’s of motifs that 

are reverse complements, a result that supports the relationship between GMEP’s and 

transcriptional regulation.  Hierarchical clustering of GMEP’s identifies clusters of motifs 

that correspond to binding sites of well-characterized transcription factors.  The GMEP’s 

of these clustered motifs have patterns of variation across conditions that reflect the 

known activities of these transcription factors. 
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BACKGROUND 

As genome sequencing projects move forward at a rapid pace, and as the use of 

DNA microarrays and related techniques becomes more widespread, there are a growing 

number of organisms for which both complete genome sequences and large volumes of 

genome-wide transcript abundance measurements are available.  An obvious challenge in 

the analysis of these data is to understand the cellular mechanisms used to orchestrate 

genomic expression programs.  As complex models of transcriptional networks have yet 

to reach maturity, most recent research has focused on the more modest goal of using 

genome-wide expression patterns and genome sequences to identify likely (and ideally 

previously unidentified) transcription factor binding sites. 

Most common strategies adopt a “group-by-expression” approach, in which genes 

with similar expression are identified, and then their transcription control regions are 

analyzed for the presence of shared sequence motifs (reviewed in Ohler and Niemann, 

2001).  These approaches postulate that genes with similar patterns of expression are 

likely to be regulated by common factors, and thus should share binding sites for these 

factors in their non-coding regions.  Co-expressed genes are identified by cluster analysis 

of gene expression data (c.f. DeRisi et al., 1997; Spellman et al., 1998; Cho et al., 1998; 

Tavazoie et al., 1999; Gasch et al., 2000).  Sequences upstream of co-expressed genes are 

analyzed for statistically over-represented sequence motifs using a variety of algorithms, 

including: expectation maximization (Bailey and Elkan, 1995), over-represented 

oligomers (van Helden et al., 1998; Wolfsberg et al., 1999), weight matrices (Hertz and 

Stormo, 1999), Gibbs sampling (Hughes et al., 2000a), enumerative statistics (Sinha and 

Tompa, 2000), probabilistic segmentation (Bussemaker et al., 2000), and sequence 
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pattern discovery (Vilo et al., 2000).  As has as been previously noted (Holmes and 

Bruno, 2000; Wagner, 1999), a problem with this approach is that it does not take into 

account the multiple, independent mechanisms by which most genes are regulated.  For 

example, two genes can be co-regulated under one set of conditions, but differentially 

regulated under others.  Although these genes would not be easily identified as co-

expressed, they nonetheless share important regulatory information. 

An alternate strategy is to adopt a “group-by-sequence” approach in which the 

transcriptional control content of sequence motifs is evaluated on the basis of the 

expression patterns of genes that contain the motif in their nominal transcription control 

regions (TCR; the adjacent cis-DNA that is believed to contain sequences that determine 

the transcriptional regulation of the gene).  If a sequence motif carries transcriptional 

information – namely if it is bound by a transcription factor and this binding alters the 

transcription rate of adjacent genes – we expect the expression patterns of genes that 

contain this motif in their TCR’s to have non-random features that reflect the activity of 

the corresponding factor.  In contrast, if a motif does not encode transcriptional 

regulatory information, the genes that contain the motif in their TCR’s should not have 

expression patterns that differ significantly from those of the entire population of genes.  

To evaluate and exploit this expectation, we define the genome mean expression 

profile (GMEP) of a sequence motif as the mean expression profile of all genes 

(regardless of the expression profiles) that contain this motif in their TCR’s.  To 

understand the reasons for using GMEP’s, consider a set of genes whose transcription is 

increased by the activity of a given transcription factor in some set of conditions, but 

whose expression patterns are otherwise unrelated.  Although the multi-factorial nature of 
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transcription control could easily obscure the commonalities in these genes’ expression 

profiles, we nonetheless expect that, on average, these genes will have higher expression 

levels in the conditions where this transcriptional activator is active when compared to 

some randomly chosen subsets of genes, and we expect the magnitude of this elevation 

will reflect the activity level of the activator.  Additional genes that contain this motif in 

their TCR’s but which are not regulated by the particular activator should also have mean 

expression profiles that are close to the population mean profile.  Thus, the GMEP of the 

sequence motif recognized by the activator should differ significantly from the 

population mean profile only when the activator is present and active and this difference 

should be greatest when the activator has its highest level of activity.  Note that this 

should still be true even if transcription of the regulated genes is also independently and 

separately controlled by additional non-overlapping factors.  
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ALGORITHM 

Data 

To compute GMEP’s, we begin with a data matrix D with r rows, each 

representing a single gene, and c columns, each representing a single experimental 

condition.  Each cell Dgj represents the expression level of gene g in condition j.  

Missing values are allowed.  In the data used here these values are log-transformed (base 

2) relative expression ratios (compared to a suitable reference sample) and the columns 

are mean-centered.  For each gene, we define a sequence S(g) that is the genome 

sequence of the gene’s nominal transcription control region.  Note that for most 

organisms there are no well-defined rules for identifying TCR’s; for analyses presented 

here using the yeast Saccharomyces cerevisiae, S(g) is the 600 basepairs upstream of the 

translation start site for gene g . 

 

Genome-mean expression profiles 

For a DNA sequence motif m, let G be the set of genes that contain this motif in 

their TCR’s.  Define the genome-mean expression profile of motif m [denote 

GMEP(m)] to be the c-dimensional vector equal to the weighted mean of the c-

dimensional vectors that represent the expression profiles of each gene in G:  

GMEP(m) j =

wmg × Dgj
g

g∈G
∑

wmg
g

g∈G
∑
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where wmg is the number of occurrences of motif m in S(g).  A weighted mean was used 

since transcription factors may have a higher affinity to genes that contain multiple 

copies of their cognate sites (Wagner, 1999). 

For simplicity, here we only enumerate motifs containing the symbols A, C, G, or 

T although this is not a necessary constraint.  For a given data matrix D and a fixed motif 

length L, we compute the (4L × c) matrix where each row is the GMEP of a single motif.  

To correspond with the data matrix D, the columns in the GMEP matrix are mean-

centered. 

 

Significance testing 

To analyze the likelihood that specific values in our GMEP matrixes are expected 

to have occurred by chance we compute approximate Z-scores for hypothesis testing.  

Consider the calculation of a GMEP as the mean of a sample (X1, …, Xn) of n gene 

expression levels drawn randomly (with replacement) from a population.  This population 

comprises all relative gene expression measurements from a single microarray 

experiment.  If a motif does not contain transcriptional information, the expression levels 

of genes that contain this motif in their TCR’s represent a randomly drawn sample, and 

the GMEP for this motif should not differ significantly from the population mean.  

Alternatively, if a motif does contain transcriptional information, and the corresponding 

transcription factor(s) are active, then we expect the GMEP to be different from the 

population mean. 
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Assume that X1, …, Xn are independent and identically distributed.  We expect 

that the sample means of many samples chosen randomly from a given (microarray) 

population with mean µ and standard deviation s will fall on a normal distribution with 

mean µ and standard deviation s

n
.  Using the above sampling distribution as a null 

distribution, we can approximate a Z-score for each value in the GMEP data matrix: 

mj

jj
jm n/s

)m(GMEP
Z

µ−
=  

where nm is the number of observations for motif m that went into the mean, and µj and 

sj are the mean and standard deviation, respectively, of all relative expression 

measurements for microarray experiment j. 

However the above assumption may not be valid because: (1) relative gene 

expression levels for individual genes may be correlated; (2) the distribution of wmg is 

not uniform across the genome.  In this case, the mean GMEP value is still expected to 

equal µ, but the standard deviation of the GMEP value will vary.  We investigated the 

variability of the standard deviation from the predicted value of s

n
 by permutation tests.  

For each of 51 hexameric motifs, a distribution of randomized GMEP values was 

obtained from 5000 random permutations of the dgj values for a single experiment.  Since 

the mean and standard deviations for these permutation distributions varied by less than 

5% from the values given by the central limit theorem, we assume that the above 

equation provides a good approximation to the Z-score. 
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RESULTS 

We computed GMEP’s for all motifs of length 5, 6, 7, or 8 nucleotides in length 

using an input gene expression dataset of 517 different DNA microarrays, each 

containing ~5300 yeast genes (overlapping genes and duplicated genes were not included 

in this analysis).  This dataset comes from the Stanford Microarray Database (Sherlock et 

al., 2001) and includes the published results of DeRisi et al., 1997; Spellman et al., 1998; 

Chu et al., 1998; Gasch et al., 2000; Ogawa et al., 2000 and some unpublished results 

that will be described in a forthcoming publication.  

Many asymmetric transcription factor binding sites confer similar regulation 

irrespective of their orientation relative to the target gene.  If GMEP’s reflect 

transcriptional regulation associated with a sequence motif, then we would expect 

GMEP’s for many bona fide regulatory motifs to be highly correlated with the GMEP’s 

of their reverse complements (note that in computing GMEP’s we only use motifs found 

on the positive strand of adjacent non-coding DNA, so there is no a priori expectation 

that GMEP’s of reverse complementary motifs should be correlated).  We computed the 

correlation between all motifs and their reverse complements (excluding motifs that are 

self-reverse complements) using the GMEP matrixes described above, and compared the 

results to a negative control in which the associations between cis-sequences and gene 

expression vectors were randomly permuted.  Since this control maintained the same set 

of expression profiles and regulatory sequences (only the assignment of the expression 

profiles to each motif were permuted) effects due either to the expression patterns 

themselves or to the distribution of motifs in non-coding sequences would be found in 

both the real and permuted data.   
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Figure 2.1 shows the histograms of reverse-complement correlations for motifs of 

lengths 5, 6, 7, and 8.  As expected, for all of these motif lengths, the distributions of 

reverse-complement correlations for the randomly permuted datasets resembled normal 

distributions with mean values close to zero.  In contrast, when the correct associations of 

gene expression data were used, there was a striking shift in the distribution of 

complement correlations towards positive correlations, with a distribution mean ranging 

from 0.357 (motif length 5) to 0.080 (motif length 8).  The positive correlations in the 

GMEP’s between many of the motifs and their reverse complements support the 

assumption that many regulatory motifs encode information when present on either of the 

DNA strands and validates the biological relevance of GMEP’s. 

The distributions of reverse-complement correlations displayed motif-position 

dependence.  We computed the distribution of reverse-complement correlation values for 

hexameric motifs found in 100 bp windows between –1000 and +1000 bp relative to the 

translation start site.  Figure 2.2 shows the reverse-complement correlations associated 

with motifs found at different positions.  The highest reverse-complement correlations 

occur for motifs found between –100 and –200 of the translation start site, while the 

reverse-complement correlation decays to near-background as the distance from the start 

site increases.  This result agrees with other data on the positional distribution of 

transcriptionally active transcription factor binding sites in yeast (Wolfsberg et al., 1999). 

We chose to examine in more detail the data for all 4096 possible hexameric 

motifs.  After calculating the GMEP associated with each motif, we then organized this 

data using hierarchical clustering (Eisen et al., 1998).  The logic of applying clustering to 

GMEP’s was that motifs that encode similar regulatory information would display similar  
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Figure 2.1) Distributions of complement correlations for all motif / reverse 

 

complement pairs 
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Figure 2.1  (continued) 

Correlations between the GMEP for a motif and the GMEP of its reverse 

complement were calculated as described.  Dashed lines indicate the distribution of 

Pearson coefficients for randomly permuted associations between each non-coding region 

and a gene expression profile, whereas solid lines indicate the distributions for actual 

data.  Mean values of the actual vs. randomized distributions: 0.357 vs. 0.009 (length 5); 

0.245 vs. -0.006 (length 6); 0.148 vs. 0.003 (length 7); 0.080 vs. -0.001 (length 8). 
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Figure 2.2) Position-dependent effects of shifts in the complement correlation 

distribution  
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Mean values were calculated for binding signal distributions in 100 bp windows at 

varying distances away from the translation start site.  Open lines with diamonds 

represent the mean of mean values obtained from five different trials in which the 

association between each non-coding sequence and gene expression level was randomly 

permuted.  The error bars indicate the standard deviation for these five trials.  Filled lines 

with squares represent the mean values of the binding signal distribution for actual data.
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 GMEP’s and would thus be clustered together, and that motifs within a cluster might 

comprise different submotifs of a single consensus binding site. 

We found that examining the clustered GMEP data in TreeView (Eisen et al., 

1998), provided an efficient way to visually identify clusters of motifs associated with 

biologically interesting expression patterns.  We used two stringent heuristic criteria for 

identifying “interesting” motif clusters: (1) the GMEP’s within the clusters had 

correlations with each other of greater than 0.75; and (2) the motifs within each cluster 

were orientation-independent (i.e. each cluster containing at least one reverse 

complement pair with a correlation greater than 0.7).  Table 2.1 lists nine separate motif 

clusters that met these criteria.  Each of these clusters contains previously-identified 

promoter motifs, including the MCB element bound by the MBF transcription factors, the 

STRE element recognized by the Msn2 and Msn4 transcription factors, and a site 

involved in environment stress response that has been previously identified but whose 

putative binding factor remains unknown.  Figure 2.3 shows the GMEP clusters 

associated with these motifs.  These GMEP profiles reflect conditions in which these 

transcription factors are known or believed to be active.  GMEP analysis on another 

dataset of gene expression for over 300 mutants of Saccharomyces cerevisiae discovered 

additional transcription factor binding sites (Table 2.2) (Hughes et al., 2000b). 
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Table 2.1) Examples of sequences that regulate gene expression in many conditions 

 

Consensus 
Sequence 

R = [A/G]; 
S = [C/G]; 
W = [A/T] 

Sequence 
motif 

Cluster 
correlation

Mean 
complement 
correlation 

Characteristics of 
GMEP 

TGAAAATTTT RRPE1 0.974 0.977 
(n=4)

Generally repressed  

AWTTTTCWTTT RRPE1 0.963 0.809 
(n=14)

Generally repressed 

SCACGTG Pho42 0.775 0.628 
  (n=6)

Induced in ∆pho80, 
∆pho85 mutants 

TGASTCA Gcn42 0.751 0.698 
  (n=3)

Induced during amino 
acid starvation 

AGGGG Msn2 or 
Msn4 

0.897 0.880 
  (n=26)

Induced during stress 

ARGGGAWA Msn2 or 
Msn4 

0.840 0.794 
  (n=15)

Induced during stress 

CAG[C/A]GATG
AG[C/A]T 

Unknown3 0.834 0.880 
  (n=20)

Repressed during 
stress 

WCGCGW Mbp1-Swi44 0.814 0.757 
  (n=11)

Cell cycle periodicity 

GATAAG Gln32 0.810 0.854 
  (n=2)

Induced during amino 
acid starvation 

1 Hughes et al., 2000a     3 Gasch et al., 2000 
2 van Helden et al., 1998    4 Spellman et al., 1998 
 

Consensus sequences were assembled from the individual motifs comprising 

clusters that were selected using the criteria described in the text.  Cluster correlation 

refers to the Pearson correlation among corrected GMEP’s for all motifs found in the 

cluster.  The mean binding signal refers to the mean value for the Pearson correlation 

between the uncorrected GMEP of each motif found in the cluster with the uncorrected 

GMEP of its reverse complement.  The number of motifs in each cluster is indicated in 

parentheses. 
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Table 2.2) Examples of sequences that regulate gene expression in the Rosetta 

compendium dataset 

Consensus 
Sequence 

Transcription 
factor 

Selected Mutant strains with significant 
GMEP values 

WTGCTGG Ace2 or 
Swi5 

(-): ERG11C

TGCACCCG Aft1 or Rcs1 (+): vma8, cup5, mac1, rip1 
CCTCGAGG DRC (+): dig1 dig2, gas1, spf1, anp1, swi4, she4 
TGASTCA Gcn4 (+): ERG11C, erg2, erg3 
WCGCGW Mbp1 or 

Swi4 
(-): ERG11C, erg2, erg3, itraconazole 

CCCCGC Mig1 (+): tup1 ssn6, ycr050c, ymr273c, acp2, kin4, 
vac8, bim1 

TCCGCGGA Pdr1 or Pdr3 (+): bub3, cem1, afg3, rml12, aep2, kim4 
SCACGTG Pho4 Many conditions 
GCACCC Rap1 (+): cem1, afg3, rml2, aep2, kim4, imp2, 

pet111, cyt1 
(-): top1, yel033w, dot4, rpl34a 

GGTCACG Rtg1 or Rtg3 (-): rtg1 
TGAAACA Ste12 (+) dig1  

(-): ste5, ste11, ste18, ste7, ste12, ste24 
CCTCGTA Upc2 (+): ERG11C, HMG2C, lovastatin, 

itraconazole, terbinafine 
 

IUPAC symbols:  S = C or G; W = A or T



 

Figure 2.3) Examples of GMEP clusters 
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Figure 2.3  (continued) 

Each row represents the GMEP for a single motif, calculated using equation (1).  

Each column represents a single cDNA microarray experiment.  The columns selected for 

display correspond to microarray experiments for the mitotic cell cycle conditions (Cell-

cycle: Spellman et al., 1998; Zhu et al., 2000); sporulation conditions (Spo: Chu et al., 

1998); environmental stress conditions (Stress: Gasch et al., 2000; Ogawa et al., 2000); 

and alternate carbon sources (Carb: Spellman PT, Brown PO and Botstein D, unpublished 

observations).  Green pixels correspond to transcriptional repression, red pixels 

correspond to transcriptional induction, and the pixel intensity reflects the magnitude of 

the change in average gene expression. 

Nine clusters of GMEP’s are displayed that meet our selection criteria as 

discussed in the text.  Manual alignment of these motifs yields the following consensus 

sequences, which are also listed in Table 1: (A) TGAAAATTTT (RRPE); (B) 

AWTTTTCWTTT (RRPE-like); (C) SCACGTG (Pho4); (D) TGASTCA (Gcn4); (E) 

AGGGG (Msn2 or Msn4); (F) ARGGGGAWA (Msn2- or Msn4-like); (G) 

CAG[C/A]GATGAG[C/A]T (Repressed in stress – Gasch et al., 2000); (H) WCGCGW 

(Mbp1-Swi4); (I) GATAAG (Gln3). 
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DISCUSSION 

Genome mean expression profiles represent one of several alternatives to “group-

by-expression” approaches for analyzing gene expression data.  Rather than look for 

statistical over-representation of sequences in a fixed subset of genes, these alternative 

methods introduce conceptual models that underlie microarray data.  Holmes and Bruno 

(2000) have developed a likelihood framework to consider similarities in both sequences 

and gene expression profiles at the same time.  The clustering of genes can thus by 

guided by choosing the most likely sequence-expression model that yields the observed 

gene sequences and gene expression levels.  Bussemaker et al. use a regression method to 

fit gene expression data to a multivariate linear model.  Significant motifs are defined to 

be those that yield the largest reduction in the χ2-squared statistic. 

The genome mean expression profile introduced here is a simple and 

straightforward tool for assessing the information content of sequence motifs.  The 

underlying model is a simple one.  However, the observed correlation between reverse-

complement pairs, the striking position-dependence of this correlation, and the success in 

identifying many known transcription factor binding sites strongly support continued 

analysis of the current data and the development of more sophisticated derivatives. 

We identified more words that matched known transcription factor binding sites 

in a gene expression dataset of deletion strains grown in rich media, compared with gene 

expression of wild-type cells in multiple stress conditions (Hughes et al., 2000b).  

Whereas our method averages out effects of multifactorial regulation, it performs better 

when analyzing the transcriptional response to targeted genetic ablations.  In the Rosetta 

compendium dataset, the identified binding sites often corresponded to gene expression 
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changes in separate signaling pathways from the primary mutation.  For instance, genes 

regulated by the iron-regulated transcription factor Aft1 were induced on average in 

deletion mutants of the copper-regulated transcription factor (mac1∆).  Deletion mutants 

of the ergosterol biosynthesis pathway showed repression of genes regulated by the cell 

cycle (Mbp1/Swi4 targets) or by general amino acid control (Gcn4 targets).  These 

transcriptional responses suggest that cross-regulation occurs among signaling pathways 

during compensation for genetic mutants. 
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PHYLOGENETICALLY AND SPATIALLY CONSERVED WORD PAIRS 

 

ASSOCIATED WITH GENE EXPRESSION CHANGES IN YEASTS 
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PREFACE 

This chapter reports a computational screen for transcription factor pairs that 

participate in multifactorial regulation.  Motivated by the expectation that promoter 

architecture has been phylogenetically conserved, I developed sequential statistical tests 

to find conserved word pair templates with co-conservation and close spacing of DNA 

sequence pairs.  By extending the group-by-sequence approach from the previous chapter 

to associate these templates with significant gene expression changes, I identified several 

examples of multifactorial regulation in yeasts. 

This chapter appeared in 2003 as an article by myself, Alan Moses, Manolis 

Kellis, Eric Lander and Mike Eisen in the journal Genome Biology, volume 4, article 

R43. 
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ABSTRACT 

Background 

Transcriptional regulation in eukaryotes is often multifactorial, involving multiple 

transcription factors binding to the same transcription control region (e.g., upstream 

activating sequences and enhancers), and to understand the regulatory content of 

eukaryotic genomes it is necessary to consider the co-occurrence and spatial relationships 

of individual binding sites.  The identification of sequences conserved among related 

species (often known as phylogenetic footprinting) has been successfully used to identify 

individual transcription factor binding sites.  Here, we extend this concept of functional 

conservation to higher-order features of transcription control regions involved in the 

multifactorial control of gene expression. 

 
Results 

We used the genome sequences of four yeast species of the genus Saccharomyces 

to identify sequences potentially involved in multifactorial control of gene expression.  

We found 989 potential regulatory “templates”: pairs of hexameric sequences that are 

jointly conserved in transcription regulatory regions and also exhibit non-random relative 

spacing.  Many of the individual sequences in these templates correspond to known 

transcription factor binding sites, and the sets of genes containing a particular template in 

their transcription control regions tend to be differentially expressed in conditions where 

the corresponding transcription factors are known to be active.  Several templates 

correspond to pairs of transcription factors known to act together, while others suggest 

previously uncharacterized pairs of transcription factors that may work coordinately.  The 

incorporation of word pairs to define sequence features yields more specific predictions 

 



85 
of average expression profiles and more informative regression models for genome-wide 

expression data than considering sequence conservation alone. 

 
Conclusions 

The incorporation of both joint conservation and spacing constraints of sequence 

pairs predicts groups of target genes that were specific for common patterns of gene 

expression.  Our work suggests that positional information, especially the relative spacing 

between transcription factor binding sites, may represent a common organizing principle 

of transcription control regions. 
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BACKGROUND 

All organisms have evolved intricate signaling networks that sense and respond to 

their environment.  At a cellular level, the activation of one or more signaling networks 

often leads to coordinated changes in gene expression, via the regulated activity and 

binding of transcription factors to transcription control regions (TCRs) of genes (e.g. 

enhancers and upstream activating sequences).  In yeast and most other eukaryotes, the 

transcriptional regulation of individual genes is often multifactorial, as multiple 

transcription factors may bind to a single TCR (reviewed in Wolberger, 1999).  

Multifactorial regulation encompasses several distinct biochemical mechanisms.  In some 

cases, transcription factors may bind cooperatively to adjacent DNA sites via direct 

physical interactions (Bhoite et al., 2002; Mead et al., 2002).  In other examples, multiple 

transcription factors that bind independently may recruit a common co-activator 

(Blaiseau and Thomas, 1998), or may act independently of one another to alter gene 

expression in response to distinct cellular cues (Gasch, 2003).  Recent studies have also 

suggested that nearby transcription factors may collaboratively compete with 

nucleosomes, thus enhancing the binding of individual transcription factors (Vashee et 

al., 1998; Miller and Widom, 2003).  Many experiments in yeast have shown that specific 

pairs of factors must be bound near each other for multifactorial regulation to occur 

(Smith and Johnson, 1992; Vashee et al., 1998; Miller and Widom, 2003), and it is on 

these spatial constraints that we focus here. 

The challenges in understanding how regulatory information is encoded in 

genomes include both the identification of regulatory sequences in TCRs and the 

elucidation of sequence constraints on productive multifactorial regulation.  Previous 
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computational work has been devoted to identifying putative transcription factor binding 

sites.  A plethora of computational methods has been developed to find over-represented 

sequences in a subset of genes believed to contain a common transcription factor binding 

site (reviewed in Stormo, 2000).  The rapid pace of genome sequencing has enabled a 

complementary approach – phylogenetic footprinting (reviewed in Duret and Bucher, 

1997; Pennacchio and Rubin, 2001) – that recognizes that the conservation of sequences 

across related organisms often reflects evolutionary selection for their presence in TCRs.  

Several algorithms have been developed to perform phylogenetic footprinting analyses 

systematically (Blanchette and Tompa, 2002; Loots et al., 2002; Schwartz et al., 2000). 

After compiling a collection of putative binding sites, associations can be made 

between various binding site assortments and gene expression.  Some recent approaches 

include Boolean logic (Pilpel et al., 2001), regression methods (Bussemaker et al., 2001; 

Keles et al., 2002; Wang et al., 2002; Conlon et al., 2003), spatial clustering (Wagner, 

1999), and multiple binding site matrix classifiers (Klingenhoff et al., 1999; Pavlidis et 

al., 2001; Kel-Margoulis et al., 2002a).  Spatial information on the relative locations of 

binding sites is ignored in all but the last two classes of approaches.  Yet even these 

methods, which often search for fixed arrangements among the individual binding sites, 

may miss permutations in the ordering of binding sites within TCRs that may still be 

bound and regulated by their corresponding transcription factors. 

The primary aim of this work was to incorporate positional information and 

phylogenetic footprinting to identify sequence motifs that may regulate gene expression.  

Consequently, we expanded the focus of phylogenetic footprinting from the conservation 

of contiguous sequences to higher-order features of TCRs, namely the spatial 
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organization of individual binding sites.  Since transcription factors participating in 

multifactorial regulation may require physical proximity among their binding sites, we 

searched for groups of conserved sequences that were more closely spaced in TCRs than 

expected.  We refer to these spatially organized sequences as conserved word templates. 

As a proof of principle, we started with the simplest example of such templates: 

pairs of conserved 6-bp words.  Conservation was assessed using the genome sequences 

of three additional Saccharomyces species, which were chosen to be sequenced in order 

to elucidate regulatory sequences conserved among these closely related species (Kellis 

et al., 2003).  To exploit this comparative genome data, we have devised a method that 

systematically tested sequence pairs for joint conservation across genomes and close 

spacing within individual TCRs.  Since genes regulated by the same set of transcription 

factors often displayed similar gene expression patterns in certain experimental 

conditions, we identified conserved word pair templates whose gene targets were 

associated with common changes in gene expression.  We adopted a group-by-sequence 

approach to first identify genes that contained the word pair templates and then to test for 

significant associations with expression levels of the identified genes (Chiang et al., 

2001).  Significant associations between conserved word pair templates and specific gene 

expression changes and the prevalence of known transcription factor binding sites 

suggest that conserved word pair templates comprise sequences important for 

multifactorial regulation in yeast.  In addition, conserved word pair templates represent 

more specific predictors of gene expression than individual words or word pairs in S. 

cerevisiae. 
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MATERIALS AND METHODS 

Datasets 

Whole-genome shotgun sequencing of Saccharomyces bayanus, Saccharomyces 

mikatae, and Saccharomyces paradoxus has been previously described (Kellis et al., 

2003).  All of these organisms are highly related to Saccharomyces cerevisiae, as they are 

grouped within the sensu stricto branch of the Saccharomyces genus (Cliften et al., 

2001).  Intergenic regions were aligned using CLUSTALW as described (Kellis et al., 

2003) and are available from the Saccharomyces Genome Database.  A total of 4101 

CLUSTALW alignments were analyzed.  These alignments were filtered for orthologs in 

at least 3 genomes. 

Gene expression measurements were obtained from the Stanford Microarray 

Database (Sherlock et al., 2001) and Rosetta (Hughes et al., 2000b).  The main 

experimental types among the 342 conditions examined include cell cycle (Spellman et 

al., 1998; Cho et al., 1998), environmental stress response (Gasch et al., 2000), DNA 

damage (Gasch et al., 2001; Lee et al., 2000), cadmium (N. Ogawa and P. O. Brown, 

unpublished data), and inhibition of ergosterol biosynthesis (Hughes et al., 2000b).  This 

data has been log-transformed (base 2), and each experimental condition has been median 

normalized. 

 

Dependent conservation of word pairs 

To assess whether two words were co-conserved in the same intergenic regions, a 

chi-square test of independence was systematically conducted for all possible words of 

length six.  We defined a word to include a 6-bp sequence and its reverse complement.  
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Each transcriptional control region (TCR) for a gene was defined as the 600 base pairs 

upstream of its translation start site.  TCRs shared between divergently transcribed genes 

less than 600 bp long were only counted once.  A word was labeled conserved in a TCR 

if all six bases were identical among at least three of the four genomes in the 

CLUSTALW alignment.  For each word pair (W, V) whose overlap was less than 4, a 

contingency table Cwv was constructed.  In this table, Cwv =  # TCR( Iw  ∩  Iv ), where Iw, 

Iv are indicator variables for the presence of each conserved word in a TCR.  TCRs 

shared between divergently transcribed genes less than 600 bp long were only counted 

once.  The expected counts Ewv were obtained from an independence assumption, i.e. the 

product of the individual word conservation probabilities, multiplied by the total number 

of TCRs.  The chi-square statistic with Yates continuity correction was computed 

according to the definition: 

χ wv
2 =

Cwv − Ewv −
1
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

EwvIv =0

1
∑

Iw =0

1
∑  

 

Spatial proximity of constrained word pairs 

The second requirement for a conserved sequence template involved constraints 

on spatial arrangements between individual words.  Any method that evaluates spacing 

distributions between word pairs must take into account positional biases that may be 

present for individual words (A. M. Moses, unpublished results).  We used a permutation 

test to evaluate the significance of the median of minimum distances, excluding overlaps, 

between conserved word pairs.  By permuting the TCR labels for one of the words, but 

not the word positions themselves, we retained the positional biases of individual words 
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within intergenic regions.  Within any given TCR t, define pt(W) = {pt

1(W), …, pt 
j(W)} 

as a vector of positions in S. cerevisiae  where word W is conserved.  Suppose that words 

W and V were jointly conserved in TCRs T1 … TN.  For each TCR t ∈ { T1 … TN }, the 

minimum distance between words W and V was computed as: 

mt =
j,k

min pt
j (W ) − pt

k (V )  

The median of minimum distances, D , was simply the median of the ordered distribution 

{ m1, …, mt }. 

We used a permutation test to generate an empirical null distribution of D  for all 

word pairs with N ≥ 10.  After randomly permuting the labels t for the position vectors of 

word V, a permutation test statistic, D  *, can be calculated as above.  By repeating this 

resampling procedure R times, an empirical null distribution D null = { D *1, …, D *R } 

can be obtained.  The significance of the observed median of minimum distances, D , in 

the N promoters was calculated as its quantile in the empirical null distribution D null.  

We set an upper bound of R = 106, but stopped permutations early if 20 or more values in 

D null were found less than D . 

Correction for multiple testing involved control of the proportion of false 

positives using a False Discovery Rate method (Benjamini and Hochberg, 1995).  This 

method has increased power over Bonferroni-type methods.  Permutation quantiles for all 

N word pairs tested were sorted in non-decreasing order: q1 ≤ … ≤ qN. 

Let k = max i :qi <
0.05 × i

N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ .  Then the first k word pairs in the ordering had a corrected 

significance level of q < 0.05, i.e. the rate of false positives is approximately 5%. 
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Association between template-specified gene groups and gene expression changes 

For each gene expression condition c in our dataset, c ∈ {1, …, 342}, we tested 

the null hypothesis that a gene subset Gwv ⊆ G selected by a conserved word pair (w, v) 

had the same distribution of gene expression ratios (Ewv
c) as the entire genome (Ec).  The 

alternate hypothesis stated that the two gene expression distributions were significantly 

different.  Any gene was an element of Go if its corresponding TCR conserved both 

sequences in the word pair.  Since the size No of gene subsets may be small and the 

distributions may not be normally distributed, we used the nonparametric Kolmogorov-

Smirnov (K-S) test.  The test statistic K compares the cumulative distribution functions 

Fwv
c and Fc corresponding to Ewv

c and Ec by the formula )()(max xFxFK ccwv
x

−=
.  The 

significance level of an observed value K* can be obtained using a numerical 

approximation (Press et al., 1992). 

A gene subset determined by a word pair was deemed to have significantly 

different expression if its K-S p-value was less than a certain threshold.  To correct for 

multiple testing, this threshold was established by controlling the False Discovery Rate.  

The significance levels pi from each K-S test were ordered in ascending order.  Let N 

represent the total number of K-S tests performed, i.e. the number of jointly conserved, 

closely spaced word pairs times the number of gene expression experiments).  If k was 

the largest i such that pi < iα / N, then the first k word pairs in the ordering were deemed 

to have a significance level of p < α. 

We ensured that the K-S p-value for the conserved word pair subset Go was more 

significant than subsets Gw or Gv comprised of only one conserved word by computing K 
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for Ew

c vs. Ev
c, as well as for Ew

c vs. Ec.  The marginal improvement of the joint word 

pair was defined as: K (Fo
c vs. Fc ) – max( K (Fw

c vs. Fc ), K (Fv
c vs. Fc ) ). 

 
Hierarchical clustering of word pair associations 

The P × C matrix of K-S p-values was log-transformed (base 10), and the word 

pairs contained in P were clustered by average-linkage hierarchical clustering using the 

program Cluster (Eisen et al., 1998).  Since the log-transformed K-S p-values were all 

negative, a centered Pearson correlation was used as the similarity metric.   

 
Stepwise linear regression of gene expression 

Regression analyses assume that a log-transformed gene expression measurement, 

Egc for gene g in condition c can be modeled by a linear equation: 

Egc = M fc × Sgf + εg
f
∑  

where Sgf represents the score of a sequence feature f in gene g, Mfc represents the 

influence term of the feature f on gene expression in condition c, and εg is the gene-

specific error term.  Genome-wide expression data was filtered for a set of 4703 genes 

with TCRs conserved in three or more Saccharomyces genomes.  For a certain 

experimental condition, the list of features was restricted to either two words found in a 

single word pair template, or to all words found in conserved word pair templates that 

were significantly associated with gene expression changes in that condition.  The score 

Sgf for feature f in a TCR corresponding to gene g was taken as either the number of 

occurrences in S. cerevisiae, or the number of occurrences conserved in three or more 

Saccharomyces genomes.  Stepwise linear regression models were fit to genome-wide 
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expression data using the statistical package R.  At each iteration, the sequence feature 

with the largest increase in the R-square goodness-of-fit score was added to the model: 

R2 = M fc × Sgf( )
f
∑

2
 

Pairwise interaction terms between sequence features f1 and f2 already selected in 

the model, expressed as Sgf1  • Sgf2, could also be added to the model at each iteration if 

the features were found in the same conserved word pair template.  Sequence features 

were added to the regression model as long as the p-values for their associated influence 

terms (Mfc) were less than 0.05.  
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RESULTS 

Identification of conserved word pair templates 

Multiple genome sequences provide additional power to studies of gene 

regulation.  Due to natural selection, mutations accumulate more rapidly in non-

functional DNA regions than in functionally constrained bases.  Given a multiple 

sequence alignment of orthologous sequences from closely related species, the aligned 

and invariant regions should be enriched for functionally important residues (Duret and 

Bucher, 1997; Pennacchio and Rubin, 2001).  Additional Saccharomyces genomes were 

sequenced to ensure sufficient sequence similarity to S. cerevisiae such that orthologous 

regions could be reliably aligned, yet enough sequence divergence that functional 

sequences would be much more conserved than non-functional sequences (Cliften et al., 

2001; Kellis et al., 2003).  In order to confirm that regulatory sequences were found in 

conserved regions, we tested a database of 47 known, non-redundant regulatory motifs 

and found that 35 of them show conservation ratios that were more than 3 standard 

deviations above that expected by random chance (Kellis et al., 2003; Zhu and Zhang, 

1999). 

We present a method to find conserved higher-order sequence templates from 

related Saccharomyces genomes (Figure 3.1).  Our method incorporates sequential 

statistical tests, with each step focusing on a distinct property of conserved sequence 

templates.  The simplest instances of sequence templates involve word pairs and their 

relative spacing.  As described in detail below, pairs of words that were conserved in the 

same intergenic regions of four Saccharomyces genomes were identified using a chi- 

square test for independence.  Next, a permutation test was used to select word pairs 
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Figure 3.1) Overview of method to discover conserved word pair templates in yeast 
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whose physical proximity was closer than that expected by chance.  Finally, to evaluate 

the transcriptional information contained in conserved word pairs with close spacing, the 

expression of genes containing TCR templates were compared to the rest of the genome.  

We initialized our word list using all 2080 words of length six, treating a given word and 

its reverse complement as identical.  For each TCR (consisting up to 600 bp upstream of 

an open reading frame), a word was labeled conserved if all six bases were identical in at 

least three of the four Saccharomyces genomes, based on the CLUSTALW alignment of 

that TCR.   

To systematically test whether words were conserved more often in the same 

intergenic regions of the Saccharomyces genomes than expected by independent 

conservation, a chi-square test was performed on all possible pairwise combinations of 

words (see Materials and Methods).  Pairs of words that overlapped each other by more 

than three nucleotides were excluded.  A significant proportion of word pairs showed 

dependent conservation: among the 2.16 million word pairs tested, 8452 of them (∼0.4%) 

had conservation χ2 scores greater than 31.1.  This threshold corresponds to a probability 

of 0.05 for obtaining one or more false positives after a Bonferroni correction for 

multiple testing. 

Next, we selected word pairs that displayed closer physical spacing in intergenic 

regions than expected by chance.  The choice of a statistical test to evaluate close 

distances must consider the local fluctuations of A+T nucleotide content in genome 

sequences.  Previous work used a Poisson distribution to evaluate proximity between 

binding sites (Wagner, 1999).  However, variability in base composition can skew 

occurrences of arbitrary sequences away from their expected distributions.  Indeed, this 
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statistical test was confounded by large fluctuations in the Poisson parameter estimates, 

which varied up to 2-fold within a single chromosome (Wagner, 1999). 

The effects of base composition fluctuations, as well as varying lengths of TCRs, 

motivated our nonparametric statistical test for close spacing.  We used the median, 

denoted by D , to summarize a distribution of minimum distances between two words in 

S. cerevisiae.  This distribution was calculated based on the genes whose TCR’s 

conserved both words, and is independent of the relative word ordering.  If two non-

overlapping words were closely spaced in all TCR’s, we should find D  to be smaller 

than expected by chance.  The statistical significance of this spacing was assessed using a 

permutation test by selecting the set of genes that contained a conserved word pair and 

then randomizing the assignment of one of the words to the genes containing that word 

(see Materials and Methods).  By permuting the TCR labels for one of the words, but not 

the word positions themselves, we retained the positional biases of individual words 

within intergenic regions. 

After correcting for multiple testing by controlling the False Discovery Rate 

(FDR), a total of 989 out of 8452 word pairs (∼12%) had significantly small values (FDR 

q < 0.05) for D  (Figure 3.2).  As a negative control, we also assayed a sample of word 

pairs that did not show dependent conservation (conservation χ2 < 1), yet were jointly 

conserved in at least 10 TCRs.  No word pairs in a random sample of 42718 pairs with 

non-dependent conservation (χ2 < 1) showed significantly small values for D , after 

correction for multiple testing.  Figure 3.2 illustrates the distributions of D  for conserved 

word pair templates, jointly conserved word pairs, and randomly conserved word pairs. 
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Figure 3.2) Word pairs in conserved word pair templates are closely spaced in S. 

cerevisiae 

 

A comparison of the median of minimum distances D  is shown for three 

categories of word pairs.  For each category, the distribution of median of minimum 

distancess is represented by a box-and-whisker plot, which was generated using the 

statistical software package R; the box extends from the 25th percentile to the 75th 

percentile, and the vertical line within the box denotes the median of the distribution.  

Dashed lines extend for 1.5 times the range of the box, and circles indicate extreme 

values.  “Selected template” denotes closely spaced and jointly conserved word pairs (χ2 

> 31.1, spacing q < 0.05, N = 989).  “Conserved” denotes dependently conserved word 

pairs that occur in at least 10 intergenic regions (χ2 > 31.1, N = 3726) and includes all of 

the word pairs in the “selected template” category.  “Random” denotes a sample of 

randomly conserved word pairs that occur in at least 10 intergenic regions (χ2 < 1).   
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The medians of these distance distributions were 54 nucleotides, 73 nucleotides 

and 89 nucleotides, respectively.  Notably, the median D  for template pairs was 

significantly smaller (p < 0.05) than the median D  for randomly conserved pairs.  These 

results indicate that many of the word pairs that were conserved in the same intergenic 

regions of multiple Saccharomyces genomes also exhibited closer spacing in TCRs. 

 
Conserved word pair templates were significantly associated with gene expression 

Our method identified conserved word pair templates that were statistically 

significant with respect to both co-conservation in multiple genomes and close spacing in 

S. cerevisiae TCRs.  To evaluate the regulatory information in these templates, we 

assessed the statistical association between gene groups that shared a template and 

changes in gene expression.  Similar to other group-by-sequence approaches for finding 

regulatory sequences, we expect that gene subsets defined by common TCR sequence 

features should have gene expression patterns that are similar under conditions where the 

transcription factors are active, yet are different from the average expression of genes in 

the genome (Chiang et al., 2001). 

To assess the association between conserved word pair templates and 

differentially expressed genes, we identified gene subsets that contained both conserved 

words in the template within their TCRs and observed their expression patterns in S. 

cerevisiae in publicly available datasets (Gasch et al., 2000; Spellman et al., 1998; Cho et 

al., 1998; Gasch et al., 2001; Lee et al., 2000; Hughes et al., 2000b; see Materials and 

Methods for details).  We then conducted Kolmogorov-Smirnov (K-S) tests to evaluate 

for differential gene expression between each gene subset and the whole genome.  K-S 

tests provide a nonparametric, sensitive and robust way to compare two distributions.  
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Similar results were obtained using other statistical tests, such as t-tests and likelihood 

ratio tests (A. M. Moses, unpublished data).  A P × C matrix was computed: each 

conserved word pair in P was assigned a K-S p-value for each experimental condition 

observed in C. (see Materials and Methods).  Entries in this matrix (K-S p-values) were 

filtered out if the K-S p-value: (1) did not meet the threshold for multiple testing; or (2) 

was less than 10 times more significant than the K-S p-value for a gene subset associated 

with either word alone (see Materials and Methods).  The latter criterion minimizes gene 

expression changes that can be explained by the presence of a single conserved word. 

Figure 3.3 displays the number of conserved word pair templates that were 

significantly associated with gene expression changes, for varying significance levels of 

the K-S test, which have been corrected for multiple testing (see Materials and Methods).  

Each line indicates the number of gene subsets that were significant in a different 

minimum number of experimental conditions.  Several hundred closely spaced word pairs 

were significantly associated with differential gene expression.  For example, 314 word 

pairs met an FDR-corrected significance threshold of p < 10-3 for 5 or more experimental 

conditions, which represented 32% of all closely spaced word pairs. 

The proportion of conserved word pair templates showing significant associations 

with gene expression was compared to two sets of negative controls, comprising word 

pairs that failed either the first (co-conservation) or second (close spacing) statistical test.  

As the first control, we used a sample of 624 word pairs that failed the joint conservation 

test (conservation χ2 < 1) found in at least 25 TCRs, but also showed modest constraints 

on word pair spacing (p < 0.15).  Only 8 of these word pairs (1.3%) had significant 
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Figure 3.3) Total number of conserved word pair template associations at different 

K-S significance values 

 

 

 

 

 

 

 

The horizontal axis shows different False Discovery Rate-corrected significance 

levels for the Kolmogorov-Smirnov test (see Materials and Methods).  The number of 

closely spaced word pairs meeting this cutoff for different minimum numbers of 

expression conditions is shown on the vertical axis.  Word pairs were also filtered for an 

improvement of 10× over the K-S significance from any single word. 
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expression at an FDR-corrected threshold of p < 10-3 for 5 or more experimental 

conditions.  To assess the relative enrichment for significant associations with gene 

expression changes at a variety of multiple testing thresholds, we computed an odds ratio: 

the proportion of significant associations among the template pairs, divided by the 

proportion of significant associations among the random pairs.  For the above threshold, 

the odds ratio was about 22.  In other words, gene groups that contain a common 

conserved word pair template in their TCRs were about 22 times more likely to be 

associated with significant gene expression changes, compared with gene groups selected 

using randomly conserved word pairs.  As shown in Figure 3.4, the odds ratios for 

association with gene expression changes in multiple conditions varied between 10 and 

35.  This analysis was repeated for a sample of 2737 co-conserved (conservation χ2 > 

31.1) word pairs that failed the close spacing test (permutation p > 0.05 after multiple 

testing), yet occurred in at least 10 intergenic regions.  The relative enrichment for gene 

expression associations in closely spaced words is displayed in Figure 3.5.  Among co-

conserved word pairs, those pairs that were closely spaced than expected were still about 

2 to 12 times more likely to be significantly associated with gene expression changes, 

compared to word pairs that were not found to have significantly close spacing.  We 

confirmed that gene groups associated with significant gene expression changes did not 

have statistically significant differences in their TCR sizes, as assessed by a permutation 

test (data not shown).  Thus, gene groups that contained co-conserved and spatially close 

word pairs are more significantly associated with gene expression changes than expected 

by chance. 
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Figure 3.4) Relative enrichment for significant gene expression associations 

compared to independently conserved words. 

 

 

 

 

Relative enrichment was computed as an odds ratio: the fraction of gene groups 

selected by conserved word pair templates associated with significant gene expression 

changes, divided by the fraction of gene groups selected by randomly conserved word 

pairs associated with significant gene expression changes.  Templates were chosen as the 

set of 989 word pairs showing dependent conservation and close spacing (χ2 > 31.1, 

spacing q < 0.05); the random word pairs included 624 pairs showing independent 

conservation and modest spacing constraints (χ2 < 31.1, spacing q < 0.15).  The odds 

ratio is shown on the vertical axis; various FDR-corrected significance thresholds for 

gene expression associations are shown on the horizontal axis.  Word pairs were filtered 

for an improvement of 10× over the K-S significance from any single word. 
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Figure 3.5) Relative enrichment for significant gene expression associations 

compared to co-conserved words that failed the close spacing test 

 

 

 

 

 

Templates were chosen as the set of 989 word pairs showing dependent 

conservation and close spacing (χ2 > 31.1, spacing q < 0.05); the background word pairs 

included 2737 pairs showing co-conservation, but no significant close spacing constraints 

(χ2 > 31.1, spacing q > 0.05).  The odds ratio is shown on the vertical axis; various FDR-

corrected significance thresholds for gene expression associations are shown on the 

horizontal axis.  Word pairs were filtered for an improvement of 10× over the K-S 

significance from any single word. 
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 Many identified sequences represented known transcription factor binding sites 

In addition to their statistical significance, many conserved word pair templates 

that were most strongly associated with gene expression changes were consistent with 

biological information on the transcription factors known to bind those sites (Costanzo et 

al., 2001).  In all analyses described below, we used 314 word pairs that had significant 

associations with gene expression changes at an FDR-corrected multiple testing threshold 

of p < 10-3 for 5 or more experiments.  For visualization purposes, we organized the P × 

C matrix by hierarchically clustering the K-S p-values for the 314 word pairs  

Hierarchical clustering of this output matrix identified groups of word pairs with 

similar K-S p-values in specific subsets of experimental conditions (Figure 3.6).  In many 

cases, the word pairs that clustered together also comprised overlapping hexamer 

sequences, suggesting that some of the hexamers in different pairs may represent a larger, 

somewhat variable sequence (Table 3.1).  For example, group #9 in Figure 3.6 included 6 

word pairs.  In each of these word pairs, one of the component words – such as 

TCACGT, CACGTG, or ACGTGC – matched part of the Cbf1 consensus binding site 

(TCACGTG).  The other component word in each pair – such as ACTGTG, CTGTGG, 

TGTGGC or GTGGCT – represented part of the known Met31 or Met32 binding site 

(AAACTGTGG).  Therefore, genes whose TCRs contained any word pair within this 

group likely contained a conserved Cbf1 binding site, along with a conserved Met31 or 

Met32 binding site, and the distances between the conserved sites in these genes were 

also smaller than expected by chance.  These results agree with the known interaction of 

Cbf1 and Met31 or Met32 for the regulation of genes involved in sulfur utilization (see 

Discussion). 
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Figure 3.6) Specific patterns of gene expression changes are associated with 

templates 
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Figure 3.6 (continued) 

The P × C matrix of K-S p-values was hierarchically clustered by rows and 

visualized with TreeView (http://rana.lbl.gov).  Each row corresponds to a conserved 

word pair template, and each column represents a single gene expression experiment.  

The experimental conditions are indicated by the color bar above and below the figure, 

according to the key shown below.  The value in each cell corresponds to the K-S p-value 

of gene expression changes in each condition (column) for a group of genes that contain 

the conserved word pair template (row) in their TCRs.  An orange color denotes a K-S p-

value below the FDR critical value of 0.001 for multiple testing, while grey represents 

values that were not significant.  Word pairs that failed to meet a False Discovery Rate 

critical value of 0.001 for multiple testing in 5 or more experiments are not shown.  Some 

of the most significant conserved word pair associations are labeled and annotated in 

Tables 3.1 and 3.2. 

 

 

 



 

Table 3.1) Consensus sequences for the most significant groups of word pairs 

  Hexamer list
for word 1 

Compiled 
sequence 1 

TF for consensus 1 Hexamer list 
for word 2 

Compiled 
sequence 2 

TF for consensus 2 # 
word 
pairs 

1 GAGATG 
GCGATG 
 AGATGA 
 CGATGA 
  GATGAG 
   ATGAGA 
   ATGAGC 
    TGAGAT 
    TGAGCT 
     GAGATG 
      
AGATGA 
      
AGCTCA 

GMGATGAGMTS
A 

PAC motif  
(Hughes et al., 
2000a) 

TGAAAA 
 GAAAAA 
  AAAAAT 
   AAAATT 
    AAATTT 
 
    

TGAAAATTT RRPE motif 
(Hughes et al., 
2000a) 

75 

2 AAGTGA 
 AATGAA 
 AGTGAA 
  ATGAAA 
  CTGAAA 
   TGAAAA 

ANTGAAAAA RRPE motif 
(Hughes et al., 
2000a) 

GAAAAA 
GAAAAT 
 AAAATT 
  AAATTT 

GAAAAWTT RRPE motif 
(Hughes et al., 
2000a) 

40 

3 GTTCCC 
 CTCCCC 
  ACCCCT 
  TCCCCT 

GYWCCCCT Msn2/4-like 
(Discovered Motif 38 
Kellis et al., 2003) 

CCCTTT 
 CCTTTT 
 CCTTAT 

CCCTTWT Msn2/4-like 
(Discovered Motif 
38 Kellis et al., 
2003) 

5 

4* GGCGGC 
 GCGGCT 

GGCGGCT Ume6 GTGGCA 
  GGCAAA 

GTGGCAAA Rpn4  

  

2

5 CCCTTT 
 CCTTTT 

CCCTTTT Msn2/4-like GGAGAA 
 GGGAAA 

GGRGAAA Hsf1 2
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  Hexamer list

for word 1 
Compiled 
sequence 1 

TF for consensus 1 Hexamer list 
for word 2 

Compiled 
sequence 2 

TF for consensus 2 # 
word 
pairs 

6 CGGCGG CGGCGG Ume6 TACCCC 
 ACCCCA 
  CCCCAA  

TACCCCAA Mig1  3

7* CCGCGG     
  

  

  

  

  

  

CCGCGG Pdr1/3 CGGAAA CGGAAA Unknown 1
8 AAACGC 

 GACGCG 
 AACGCG 
  ACGCGT 
  ACGCGA 
  TCGCGT 
   CGCGTC 

ARWCGCGW Swi6/ 
Mbp1 

CGCGAA 
 ACGAAA 
 GCGAAA 
  CGAAAC 
  CGAAAA 

CRCGAAAM Swi4/6 9

9 TCACGT 
CACGTG 
  ACGTGC 

TCACGTGC Cbf1 ACTGTG 
 CTGTGG 
  TGTGGC 
   GTGGCT 

ACTGTGGCT Met31 or Met32 6 

10 TATTTT 
  TTTTGT 
   TTTGTT 
   ATTGTT 

TWTTGTT Fkh1/2 TGTTTA 
 GTTTAC 
 
 

TGTTTAC Fkh1/2 4

11    TTTGTT 
    TTGTTT 

TTTGTTT Fkh1/2 TTTTTC 
TTTTTT 

TTTTTY TnC 4

12
* 

TCGTTT 
 CGTTTA 

TCGTTTA Ecm22 | Upc2 CCGATA 
 CGATAA 

CCGATAA Hap1 4

13 TCGTTT  
 CGTTTA 

TCGTTTA Ecm22 | Upc2 TATTGT 
 ATTGTT 

TATTGTT Rox1 2

14  CGTTTC 
  GTTTCT 

 CGTTTCT Ecm22 | Upc2 TTCTTT 
 TCTTTT 
  CTTTTT 

TTCTTTTT TnC 5
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Table 3.1  (continued) 

The output P × C matrix of word pairs (P) that were significantly associated (p < 0.001) with at least 5 or more 

environmental conditions (C) was ordered using hierarchical clustering.  Numbers correspond to groups of overlapping word pairs 

indicated in Figure 3.6.  Stars denote sequence pairs whose involvement in multifactorial regulation has not been previously 

reported.  Compiled sequences were assembled from groups of word pairs that were found in adjacent rows in the ordering of K-S p-

values.  Since individual words must have passed all three statistical tests to be included in the output matrix, these consensus 

sequences may not reflect the actual biological specificities of conserved transcription factor binding sites (refer to Kellis et al., 2003 

for a more complete list).  Residues are shown in bold if it is contained in at least two hexamers.  Numbers denote the groups that are 

indicated in Figure 4.  IUPAC codes used: K (G or T); M (A or C); R (A or G); S (C or G); W (A or T). 
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Table 3.1 shows a partial list of the 14 most significant groups of consensus 

sequences, which were assembled by joining adjacent word pairs in the clustered output 

matrix with overlapping sequences.  Many of these consensus sequences matched 

transcription factor binding sites that had been biochemically verified.  Several pairs of 

transcription factors, denoted by asterisks in Table 3.1, were not previously known to act 

on the same sets of target genes. 

 
Conditions with significant gene expression changes coincided with transcription 

factor activity 

Further support that templates contain transcriptional regulatory information was 

obtained from a key observation: the experimental conditions with significant gene 

expression changes often corresponded to conditions in which the cognate transcription 

factors are known to be active (Table 3.2).  In addition, many gene subsets that shared an 

individual word pair template in their TCRs were highly enriched for gene expression 

changes.  We will survey examples of word pair templates associated with gene 

expression changes, focusing our attention on several environmental stress conditions. 

The environmental stress response represents a paradigm for multifactorial control of 

transcription regulation.  Genome-wide expression studies found that ~300 genes were 

induced and ~600 genes were repressed in response to a wide variety of stressful 

environmental transitions (Gasch et al., 2000; Causton et al., 2001).  Many of these genes 

also showed subtly different expression patterns in response to specific stimuli, 

suggesting that the common environmental stress response may be modulated by the 

activity of condition-specific transcription factors (Gasch et al., 2000). 

 



 

Table 3.2) Summary for most significant groups of conserved word pairs 

   Conserved Word
Pairs 

(Compilation of 
overlapping 

words) 

Known 
transcription 

factors or 
motifs 

Conservation 
(χ2, p-val via 
Bonferroni) 

Median of 
min dist 

D  

# 
TCR 

 

Expression conditions with significant 
gene subsets (FDR significance) 

     1 G[AC]GATGAG
TGAAAATTTT 

PAC, 
RRPE 

240.6  (10-49) 19 ± 0.5 162 Repressed in multiple environmental
stresses                       (10-6) 

     2 ANTGAAA, 
GAAAAWT 

RRPE 
(Overlap) 

96.9  (2×10-16) 43 ± 11 68 Repressed in multiple environmental
stresses                      (10-6) 

  3 CTCCCC, 
CCCTTA 

Msn2/4-like, 
(Overlap) 

53.8  (5×10-7) 28 ± 3.7 15 Induced in multiple environmental 
stresses                       (10-6) 

    4 GGCGGC,
GTGGCA 

Ume6, 
Rpn4 

43.7  (9×10-5) 48 ± 16 25 Cadmium, diamide    (10-4) 
MMS, heat shock       (10-3) 

  5 CCTTTT, 
GAGAAA 

Msn2/4, 
Hsf1 

56.2  (2×10-7) 54 ± 5.4 69 Heat shock                 (10-4) 

    6 CCGCCG,
ACCCCA 

Ume6, 
Mig1 

41.9  (2×10-4) 17 ± 1.5 
 

14 Stationary phase        (10-6) 

  7 CCGCGG, 
CGGAAA 

Pdr1/3, 
Unknown 

111 (2×10-19) 44 ± 12 21 Diamide                     (10-3) 

  8 RACGCG, 
RCGAAA 

Swi6/Mbp1, 
Swi4/6, 

83.0  (7×10-13) 33 ± 5.0 33 Cell cycle, G1 phase   (10-6) 

  9
 

GCACGTGC, 
ACTGTGGC 

Cbf1 | Pho4, 
Met31 or 
Met32 

37.4  (2×10-3) 
 

22 ± 2.5 22 Amino acid starv.      (10-6) 
Nitrogen depletion     (10-6) 
Cadmium                    (10-6) 

  10 T[AT]TTGTT 
TGTTTAC 

Fkh1/2 
(Overlap) 

51.1  (2×10-6) 57 ± 6.9 48 Cell cycle                    (10-3) 

   11 TTTGTT, 
TTTTTY 

Fkh1/2, 
TnC 

37.6  (2×10-3) 49 ± 4.4 267 Late nitrogen depletion (10-3) 113

 



 

    12 CCGATA,
TCGTTT 

Hap1, 
Ecm22 | Upc2 

36.2  (4×10-3) 41 ± 5.9 28 Ergosterol inhibition   (10-4) 
MMS (DNA damage) (10-3) 

    13 TCGTTT,
TATTGTT 

Rox1, 
Ecm22 | Upc2 

58.8  (4×10-8) 55 ± 0.5 69 Ergosterol inhibition  (10-3) 
Early menadione        (10-3) 

  14 TGACTC, 
TCTTTT 

Gcn4, 
TnC 

35.6 59 ± 9.1 63 Ergosterol inhibition   (10-5) 
Amino acid starvation (10-5) 

 

 

Statistics are listed for one representative word pair for each group of overlapping word pairs, numbered as in Figure 3.6.  

Multiple transcription factors that may bind the same sequence motif are separated by “|”.  To summarize the close spacing ( D ) 

between conserved word pairs, we report the median of the distribution of minimum distances in S. cerevisiae ± standard deviation of 

the medians of the distribution of minimum distances in all four Saccharomyces genomes. 
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Over one-third of the conserved word pair templates were associated with gene 

expression changes in multiple environmental stress conditions (Figure 3.6, Tables 3.1 

and 3.2).  The largest group of overlapping word pairs contained matches to the PAC and 

RRPE motifs, which were associated with genes that were repressed in multiple stresses 

(Gasch et al., 2000; Hughes et al., 2000a).  These motifs were discovered by their 

enrichment among the approximately 600 genes that were commonly repressed in stress, 

yet the putative transcription factors that bind these sequences have yet to be determined.  

The second largest group of overlapping word pairs corresponded to the RRPE core, 

which is 10 nucleotides long, along with some flanking conserved bases.  These 

repressed genes were enriched for rRNA processing genes, the group of genes in which 

this motif was originally identified (Hughes et al., 2000a).  Nine conserved word pair 

templates contained sequences that matched most of the stress response element (STRE), 

the consensus site for the general stress transcription factors Msn2/Msn4.  Genes that 

conserved both of these words in their TCRs were significantly associated with gene 

expression induction in multiple environmental stresses, including cadmium, heat shock, 

amino acid starvation, nitrogen depletion, and stationary phase.  In most cases, the 

sequences comprising the word pairs were mutually overlapping.  We interpret these 

sequences as representing different halves of the same binding site.  Since our test for 

close spacing required non-overlapping sequences, the two words must have appeared 

over 6 bp away in TCRs.  Thus, these genes have likely conserved at least two Msn2/4-

like consensus sequences in their TCRs. 

Several groups of conserved word pair templates only showed significant 

associations with gene expression in different subsets of stress conditions (Figure 3.6, 
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Tables 3.1 and 3.2).  For example, binding sites for Cbf1 and Met31 or Met32 were found 

to co-occur in several conserved word pair templates.  Genes that contained conserved 

binding sites for these transcription factors in their TCRs were strongly induced in 

cadmium, amino acid starvation and early nitrogen depletion.  These conditions are 

consistent with the biological activity of these transcription factors, which induce 

transcription of sulfur assimilation genes in response to the demand of sulfur-containing 

metabolites (Thomas and Surdin-Kerjan, 1997; Blaiseau and Thomas, 1998; Fauchon et 

al., 2002).  In another example, several word pairs comprising binding sites for the 

transcriptional repressors Mig1 and Ume6 were associated with induced gene expression 

in stationary phase.  The observed derepression of Mig1 and Ume6 targets in stationary 

phase is consistent with the nuclear export of the Mig1 repressor under glucose 

limitation, as well as recent findings that carbon source genes can be Ume6 targets 

(Williams et al., 2002).  In addition, genes containing a conserved sequence similar to the 

consensus for Msn2/4, an inducer of the environmental stress response, and the heat-

shock transcription factor Hsf1 were significantly induced under heat shock.  Once again, 

the conditions with most significant gene expression changes corresponded to the known 

activities of the transcription factors involved. 

 

Enrichment for known transcription factor targets among individual gene groups 

Some groups of genes with shared word pair templates were enriched for known 

targets of transcription factors.  The vast majority of genes with conserved sites for both 

the Cbf1 and Met31 or Met32 transcription factors were induced more than 4-fold in 

cadmium, amino acid starvation, and early nitrogen depletion (Figure 3.7A).  Half of 
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Figure 3.7) Enrichment for known transcription factor targets among individual 

gene groups  
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Figure 3.7  (continued) 

Gene expression patterns are shown for genes whose TCRs contain the known 

binding sites for: (A) Cbf1 (CACGTG) and Met31 or Met32 (TGTGGC); or (B) Hap1 

(CCGATA) and Ecm22/Upc2 (TCGTTT).  The genes are listed in ascending order of 

minimum distance between the two conserved words in the corresponding TCRs of S. 

cerevisiae.  Each row in these diagrams represents a given gene’s expression pattern 

under the conditions shown in each column: exposure to increasing concentrations of 

cadmium chloride (from 0.05 mM to 0.4 mM); an amino acid starvation timecourse; a 

nitrogen-source depletion timecourse Gasch et al., 2000; and growth in the presence of 

drugs or genetic alterations that inhibit ergosterol biosynthesis (erg3∆, itraconazole, 

erg28∆, overexpressed ERG11, erg2∆, tunicamycin, terbinafine, erg6∆, overexpressed 

HMG2) (Hughes et al., 2000b).  A red color indicates that the gene’s expression was 

induced under those conditions, while a green color indicates that the gene was repressed 

under those conditions; black indicates no detectible change in expression, and grey 

indicates missing data.  Gene names in purple correspond to genes with confirmed roles 

in (A) sulfur utilization or (B) ergosterol biosynthesis; gene names in orange show highly 

correlated expression patterns, despite their lack of annotation as sulfur utilization genes.  

Arrows above the columns indicate conditions in which the displayed gene groups show 

significant gene expression changes according to the Kolmogorov-Smirnov test, after 

False Discovery Rate correction for multiple testing at a p-value of 0.001. 
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these genes have confirmed roles in sulfur utilization processes, such as methionine 

metabolism, sulfate assimilation, sulfate transport and sulfur amino acid metabolism.  

Compared to the rest of the genome, the group of genes that conserved both of these 

words within their TCRs was highly enriched for sulfur utilization genes (hypergeometric 

p-val < 1 × 10-16, after Bonferroni correction for multiple testing).  In addition, we found 

3 genes in this group (GSH1, RAD59 and BNA3) with highly correlated expression under 

the above conditions, and thus may be commonly regulated by Cbf1 and Met31 or 

Met32, despite their lack of direct annotation as sulfur utilization genes.  The shared 

conservation of both the Cbf1 and Met31 or Met32 sites provides further evidence that 

these genes comprise part of the cellular response to the demand for products of this 

pathway.   

Genes with a conserved half-site for the Hap1 transcription factor, as well as a 

conserved Ecm22/Upc2 binding site in their TCRs, were significantly associated with 

induction in the presence of drugs that inhibited ergosterol biosynthesis (Figure 3.7B).  

This group of 30 genes contained 8 ergosterol biosynthesis genes; this proportion 

represented an enrichment compared to the rest of the genome (hypergeometric 

p < 6 × 10-6 after Bonferroni correction for multiple testing).  The transcription factors 

Ecm22 and Upc2 have been shown to induce the expression of ergosterol biosynthesis 

genes in response to low intracellular concentrations of ergosterol, while Hap1 is known 

to regulate the expression of these genes according to the availability of heme and oxygen 

which are required for the pathway (Vik and Rine, 2001; Kwast et al., 1998). 
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Conserved word pairs were more informative than sequence features derived from 

single words or single species 

The above results from the K-S test strongly suggested that sequence features 

based on the co-conservation and close spacing of word pairs identified examples of 

multifactorial regulation.  Two other statistical tests were also performed to examine how 

information contained in conserved word pair templates compared to other sequence 

features derived from S. cerevisiae, or from single conserved words.  Informative 

sequence features should be both highly specific (a high proportion of genes that share 

the feature should show gene expression changes) and highly sensitive (most of the genes 

that show gene expression changes should also share the feature). 

To assess the specificity of a sequence feature in explaining gene expression, we 

computed the average expression profile for all genes that shared that feature.  We expect 

that if a sequence feature represented a transcription factor binding site, genes containing 

that feature in their TCRs would be induced (or repressed), on average, compared to all 

the genes in the genome (Chiang et al., 2001).  By comparing the average expression 

profile derived from conserved word pair templates with average expression profiles 

derived from simpler sequence features, we assessed how much information was obtained 

by incorporating both the conservation and pairwise combination of sequences.  For 

representative word pairs associated with significant gene expression changes in 

environmental stress conditions, we compared the average expression profile for: gene 

subsets that shared single words in S. cerevisiae; gene subsets that conserved single 

words among multiple genomes; and gene subsets that shared both words in S. cerevisiae 

(Figure 3.8).  In general, the average gene expression profiles for conserved word pairs  

 



 

Figure 3.8) Incorporation of conservation and word pairs provided more informative average expression profiles 
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Figure 3.8  (continued) 
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Figure 3.8  (continued) 

Groups of genes whose TCRs contained various sequence features were 

summarized by the average of their gene expression profiles.  Each row in these diagrams 

represents a given gene group’s average expression pattern under the conditions shown in 

each column: exposure to increasing concentrations of cadmium chloride (from 0.05 mM 

to 0.4 mM); 20 minutes after heat shock to 37°C (from 17°C, 21°C, 25°C, 29°C, and 

33°C); an amino acid starvation timecourse; a nitrogen-source depletion timecourse; 

progression into stationary phase (2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 1 day, 2 days, 3 days, 5 

days of growth) Gasch et al., 2000.  Representative conserved word pair templates were 

chosen for analysis, corresponding to: (A) Msn2/4-like sequences (CTCCCC and 

CCCTTA); (B) Cbf1 (CACGTG) and Met31 or Met32 (TGTGGC) binding sites; (C) 

Mig1 (ACCCCA) and Ume6 (CCGCCG) binding sites; (D) Msn2/4-like (CCCCTT) and 

Hsf1-like  (GAGAAA) sequences.  For each of the panels (A) through (D), each row 

represents the average expression profile for gene groups chosen by different sequence 

features in their TCRs: single words found in S. cerevisiae (rows 1 and 2); single words 

conserved in three or more Saccharomyces genomes (rows 3 and 4); word pairs found in 

S. cerevisiae (row 5); word pairs conserved in three or more Saccharomyces genomes 

(row 6).  Arrows above the columns indicate conditions under which gene groups sharing 

the conserved word pair template (row 6) were significantly associated with gene 

expression changes, at a p-value of 0.001 (K-S test after FDR correction for multiple 

testing).   
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were more significantly different from the average expression of genes in the genome 

when either conservation or word pairs was used as an additional criterion for gene 

selection.  In Figure 3.8, the last two rows for each word pair indicate the average 

expression profiles for genes that shared both words in S. cerevisiae, as well as the 

average expression profile for genes that conserved both words in multiple genomes, 

respectively.  Strikingly, the consideration of word pair conservation yielded further 

increases in average gene expression profiles compared to word pairs in S. cerevisiae 

alone.  Thus, conserved word pair templates contained more specific predictors of gene 

expression than comparable sequence templates derived from S. cerevisiae alone. 

To evaluate how well sequence features can explain gene expression changes 

across the whole genome, several groups have constructed linear regression models using 

various choices for features (Bussemaker et al., 2001; Keles et al., 2002; Wang et al., 

2002; Conlon et al., 2003).  The R-square statistic of a regression model indicates the 

percent of global variance that can be explained using the sequence features in the model.  

Models with better fits to the genome-wide expression data would thus have greaterR-

square values.  To assess the sensitivity of individual word pairs in explaining global 

gene expression, we first constructed regression models using individual word pairs (see 

Materials and Methods).  We chose three representative environmental conditions: amino 

acid starvation (30 min) (Gasch et al., 2000); stationary phase (10 h in YPD) (Gasch et 

al., 2000); and ergosterol inhibition (terbinafine) (Hughes et al., 2000b).  We constructed 

regression models using counts of individual words in S. cerevisiae TCRs, or using 

counts of words that were conserved among Saccharomyces TCRs.  Sequence 

conservation improved the fit of regression models based on individual word pairs 
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(∆R2 = 0.3% to 1.3%)  (Figure 3.9A).  These results clearly show that sequences 

conserved in multiple Saccharomyces species were more likely to be associated with 

gene expression changes. 

To assess the joint contribution of word pairs on gene expression, we also 

included interaction terms between the individual words only if their coefficients were 

statistically significant (see Materials and Methods).  Pairwise interaction terms, 

expressed as the product of scores for two features, represent a standard way to assess 

whether two features contribute non-additively to gene expression (Keles et al., 2002).  

Indeed, the inclusion of significant pairwise interaction terms improved the fits for both 

the S. cerevisiae sequence model and the conserved sequence model, increasing the R-

square by a further 0.2% to 0.9% (Figure 3.9A).  Whereas the interaction terms only 

comprise a small proportion of the global variance, they can be interpreted as statistical 

evidence of dependence between sequence features (Keles et al., 2002).  Therefore, the 

non-additive contributions of conserved word pair templates further suggest their 

involvement in multifactorial regulation. 

We expanded these models to include multiple conserved word pair templates 

using a stepwise linear regression procedure.  The set of potential sequence features was 

expanded to include all words found in templates associated with significant gene 

expression changes in that condition, as assessed previously by the K-S test (see 

Materials and Methods).  The final R-square values for regression models based on 

occurrences of multiple words in S. cerevisiae ranged from 7.2% to 9.3% (Figure 3.9B 

and Table 3.3).  Once again, the use of conserved instances of individual words yielded 

better model fits, with improvements in R-square values from 3.1% to 9.5%.  
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Figure 3.9) Regression models using conserved word pairs represented better fits to 

genome-wide expression data 

 

 

(A) Linear regression models were fit using two words found in a representative 

conserved word pair template, using different sequences features as predictors: counts of 

individual words found in the TCRs of S. cerevisiae genes (Scer); word counts in 
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Figure 3.9  (continued) 

S. cerevisiae along with a pairwise interaction term (Scer Interact); counts of word that 

were conserved in the TCRs of three or more Saccharomyces genomes (Conserv); 

conserved word counts along with a pairwise interaction term (Conserv Interact).  The 

sequence features and gene expression datasets used were: CACGTG and TGTGGC for 

30 minutes after amino acid starvation (violet) Gasch et al., 2000; ACCCCA and 

CCGCCG for 10 hours of growth in YPD (green) Gasch et al., 2000; and CCGATA and 

TCGTTT for 3 hours of growth of terbinafine (orange) Hughes et al., 2000b.  The chi-

square goodness-of-fit values obtained from the best models is summarized for each 

model.   

(B) Same as above, expect that all words found in conserved word pair templates were 

used as possible features for stepwise linear regression models. 
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Further improvements in the model fit (∆R2 = 0.5% to 1.4%) were obtained using 

pairwise interaction terms between individual words found in the same word pair 

template.  The total R-square values for the regression models based on conserved word 

pair templates with interaction terms thus ranged from 10.8% to 20.2% (Table 3.3).  

Thus, sequences features based on conserved word pair templates could explain more of 

the global gene expression changes than features based on S. cerevisiae alone. 
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Table 3.3) Stepwise linear regression statistics 

(A) Amino Acid Starvation 0.5 h 

 S. cerevisiae Three or more genomes  
Word Mf p-val ∆ R2 Mfc p-val ∆ R2 Wang 

p-val  
AAATTT -0.165 < 2.0e-16 3.1% -0.293 < 2.0e-16 6.6% 1.3e-37 
GATGAG ⎯ ⎯ ⎯ -0.333 6.7e-16 4.1% 1.6e-30 
AAGGGG 0.209 3.2e-14 1.8%  0.455 < 2.0e-16 3.5% 1.6e-22 
TGTGGC 0.094 1.1e-03 0.6%  0.283 2.9e-07 1.6% 5.0e-07 
CCCTTA 0.300 2.0e-16 1.7% 0.363 < 2.0e-16 1.4% 3.2e-06 
TGACTC 0.229 4.6e-10 0.8%  0.311 2.2e-11 1.0% 4.6e-01 
AAATTT*
GATGAG ⎯ 

⎯ ⎯ -0.266 
9.1e-09

0.5% ⎯ 

CACGTG 0.045 3.5e-01 0.5%  0.146 8.6e-03 0.5% 1.9e-07 
CACGTG*
TGTGGC   0.443 

3.8e-10 0.5%  0.749 
1.0e-12

0.9% ⎯ 

GTGAAA -0.066 1.1e-03 0.3% -0.082 4.6e-03 0.1% ⎯ 
TCTTTT -0.022 2.3e-02 0.1% ⎯ ⎯ ⎯ ⎯ 
Total R2   9.6%   20.2%  
 

 

(B) Stationary phase, YPD 10 h 

 S. cerevisiae Three or more genomes  
Word Mf p-val ∆ R2 Mfc p-val ∆ R2 Wang 

 p-val 
AAATTT -0.218 < 2.0e-16 3.2% -0.377 < 2.0e-16 5.8% 5.5e-39 
AAGGGG   0.233 1.7e-11 0.9%  0.591 < 2.0e-16 4.0% 4.5e-26 
CCCTTA 0.460 < 2.0e-16 3.7%  0.579 < 2.0e-16 2.2% 3.0e-07 
GATGAG ⎯ ⎯ ⎯ -0.242 4.1e-06 1.8% 4.4e-18 
ACCCCA 0.224 3.0e-03 0.3%  0.459 1.5e-06 1.0% ⎯ 
AAATTT*
GATGAG ⎯ 

⎯ ⎯ -0.287 1.7e-06 0.4% ⎯ 

CCGCCG   0.333 5.1e-07 0.8%  0.208 1.5e-02 0.3% ⎯ 
ACCCCA*
CCGCCG   0.294 

1.8e-02 0.1%  0.807 5.6e-05 0.3% ⎯ 

GTGAAA  -0.090 4.2e-04 0.2% -0.122 1.0e-03 0.2% ⎯ 
Total R2   9.4%   6.0%  
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Table 3.3  (continued) 

(C) Terbinafine 3 h 

 S. cerevisiae Three or more genomes  
Word Mf p-val ∆ R2 Mfc p-val ∆ R2 Wang 

 p-val 
TGACTC 0.162 < 2.0e-16 3.5% 0.261 < 2.0e-16 5.1% 1.3e-14 
TCGTTT 0.071 < 2.0e-16 2.0% 0.132 < 2.0e-16 3.3% 2.5e-24 
TGAAAC -0.055 1.3e-12 1.1% -0.077 9.50e-11 0.9% 4.0e-03 
GATGAG -0.029 1.7e-03 0.3% -0.047 6.70e-06 0.4% ⎯ 
AAGGGG 0.025 1.1e-02 0.1% 0.050 5.40e-04 0.3% 2.4e-01 
CCGATA -0.008 6.5e-01 0.1% 0.004 8.6e-01 0.1% ⎯ 
CCGATA*
TCGTTT 0.080 9.4e-06

0.3% 
0.146 3.2e-07

0.5% ⎯ 

CCCTTA -0.021 5.0e-02 0.1% -0.038 1.1e-02 0.1% ⎯ 
Total R2   7.6%   10.8%  
 
 

Words and pairwise interaction terms are reported in the order of selection by the 

stepwise linear regression procedure performed on conserved words.  The influence terms 

(Mf ), associated p-values, and increase in R-square values were computed using the 

statistical package R.  Wang et al., 2002 previously fit regression models using sequence 

features derived from S. cerevisiae.  The p-values of the most similar sequences features 

in their regression models were reported where available; sequence features that were 

more significant in this analysis are indicated in bold. 
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DISCUSSION 

This work describes two principles for analyzing combinations of regulatory 

sequences.  First, sequence conservation among closely related yeast species was used to 

find sequences that were more likely to be functionally important.  Secondly, a template 

approach that considered joint positional distributions of word pairs increased the 

specificity of gene expression predictions using sequence-based rules.  We have 

demonstrated that higher-order sequence features within TCRs were conserved across 

multiple Saccharomyces genomes.  Closely spaced and jointly conserved word pairs were 

also more likely to be associated with specific gene expression changes.  A large 

proportion of words contained in templates matched known transcription factor binding 

sites.  In many cases, associations between templates and gene expression changes were 

significant in conditions when the corresponding transcription factors are known to be 

active.  In addition, groups of genes that co-conserved both words in a template often 

were enriched for common functional roles.  These results suggest that conserved word 

pair templates, which were discovered strictly based on higher-order properties of 

sequence conservation, also carry biological relevance. 

Conserved word pair templates may be consistent with several underlying 

biochemical mechanisms.  One possible interpretation of templates is that closely spaced 

sequence pairs may promote direct or indirect interactions between transcription factors 

by increasing the local concentrations of the individual factors.  For example, the 

proximity of Cbf1 and Met31 or Met32 binding sites may promote interaction between 

these factors in recruiting their common transcriptional activators, Met4 and Met28.  

Experimental studies on the TCRs of MET3 and MET28 have demonstrated that the 
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binding of Cbf1 enhances the DNA binding affinity of Met31 or Met32 (Blaiseau and 

Thomas, 1998).  Indeed, biochemical experiments suggest that all of these proteins may 

interact at the TCRs of some sulfur utilization genes (Blaiseau and Thomas, 1998). 

Another possible regulatory scheme for conserved, closely-spaced word pairs is 

that individual sequences found in templates may correspond to binding sites for 

transcription factors that bind independently under the same or separate conditions.  The 

Msn2/4 and Hsf1 transcription factors, whose binding sites were similar to words 

identified in a template, represent an example of multifactorial regulation in response to 

distinct environmental stimuli (Gasch, 2003).  Spacing constraints between their binding 

sites could nevertheless be important under conditions when both factors are active.  

Recent experiments have suggested that transcription factors that do not interact may still 

coactivate gene expression as long as their binding sites are spaced within a nucleosome 

length (~150 bp), due to collaborative competition of the bound transcription factors with 

core histones (Miller and Widom, 2003). 

Close spacing between word pairs may be important for reasons other than the 

promotion of transcription factor interactions.  Different regions of TCRs at varying 

windows away from translation start sites may be more competent at recruiting or 

inhibiting RNA polymerase.  These differences may be influenced by nucleosome 

accessibility, chromatin structure, or DNA physical properties, which can be correlated 

with local A+T content (see Liao et al., 2000 for references).  Notably, we have also 

found that the relative proportions of A and T nucleotides vary considerably within the 

200 bp closest to translation start sites (A. M. Moses, M. B. Eisen and Audrey Gasch, 

unpublished results).  Low-complexity words that contained 4 or more A’s or T’s could 
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be found in many templates (denoted by TnC in Figure 3.6 and Table 3.1); these words 

may serve as surrogates for a distance window from translation start.  Binding sites that 

are closely spaced to these low-complexity words may be found in more transcriptionally 

competent regions of TCRs.  Alternatively, the possibility that each word in an identified 

pair may be found at similar distances from a third conserved sequence element in all 

TCRs cannot be discounted.  

Direct biological models of binding site organization in TCRs, as exemplified by 

conserved word pair templates, provided several advantages over statistical models based 

on sequence combinations in S. cerevisiae.  Average gene expression profiles showed 

that conserved word pairs were more specific predictors of gene expression (i.e., much 

fewer false positives) than single or pairwise sequences derived from S. cerevisiae, 

indicating that conserved regions among these closely related Saccharomyces species 

were enriched for functional sequences.  The consideration of distance constraints 

between pairs of conserved sequences found many more examples than a previous study 

of binding site clustering for multiple transcription factors in S. cerevisiae (Wagner, 

1999).  In addition, we discovered new sequences and pairwise interaction terms using 

regression models similar to those reported in Wang et al., 2002 and Conlon et al., 2003 

(Table 3.3).  Conserved word pair templates accounted for similar changes in genome-

wide expression (R-square from ~11% to ~20%) using only 8 to 10 features, compared 

with dozens of overlapping features used by other methods (Wang et al., 2002; Conlon et 

al., 2003).  Therefore, individual features from our methods were more predictive about 

genome-wide expression changes.   
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A key limitation of our approach is the use of hexamers, which may fail to capture 

known binding sites.  For example, the binding sites for Mcm1 and Rap1 are poorly 

modeled by exact words, in that these transcription factors bind sequences with relaxed 

specificity at certain positions (Stormo, 2000).  Our method missed examples of 

multifactorial regulation involving Mcm1 or Rap1 that were suggested by previous work 

using position weight matrices (Pilpel et al., 2001).  In addition, our method required 

sequence identity for a word to be labeled as conserved.  This strict requirement omitted 

binding sites that may have retained their function, despite mutations in degenerate 

positions that may have little impact on transcription factor binding.  This tradeoff 

between enumerating all possible words and capturing degenerate positions in binding 

sites was compounded by the very large number of pairwise word combinations that were 

enumerated.  Further work should incorporate more complicated sequence models, as 

well as optimization methods that restrict the search space of sequence combinations. 

The consideration of joint conservation and close spacing has provided insights 

into how TCR organization may influence the multifactorial regulation of gene 

expression in Saccharomyces cerevisiae.  These criteria were motivated by experimental 

studies on the positional organization of individual binding sites within TCRs, with the 

hypothesis that this underlying architecture would be functionally conserved.  Even more 

complicated higher-order sequence rules are apparent in the organization of cis-

regulatory modules in Drosophila melanogaster (Berman et al., 2002).  Nevertheless, a 

common organizational theme of the TCRs in both of these organisms is the importance 

of relative spacing between transcription factor binding sites.  The discovery of additional 
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principles for TCR organization will further advance our understanding of how 

regulatory information is encoded in genome sequences. 
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PREFACE 

The last two chapters have provided genome-wide insights on the association of 

regulatory sequences with changes in gene expression.  In particular, the previous chapter 

presented many examples of multifactorial regulation that were inferred from close 

spacing between conserved word pairs.  These distance constraints probably differ for 

pairs of transcription factors that interact by different mechanisms.  By focusing 

experiments on a model pair of yeast transcription factors, I have characterized the effects 

of distance constraints and sequence contexts on recruitment of the co-activator, Met4. 
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ABSTRACT 

Organizational features of regulatory sequences, such as the distance and 

sequence composition between transcription factor binding sites, influence the assembly 

of the multiprotein complexes that regulate RNA polymerase recruitment.  We expect 

that different constraints on promoter architecture may arise from distinct mechanisms of 

transcription factor interactions at regulatory regions.  We have developed a genetic 

approach to investigate how reporter gene transcription is affected by varying the spacing 

between binding sites for transcription factors known to coordinately regulate 

transcription.  We characterized the components of promoter architecture that govern the 

yeast transcription factors Cbf1 and Met31 or Met32, which bind independently, but 

collaboratively recruit the co-activator Met4.  A Cbf1 binding site was required upstream 

of a Met31 or Met32 binding site for full reporter gene activation.  Distance constraints 

on coactivator recruitment were more flexible than those for cooperatively binding 

transcription factors.  Distances from 18 to 50 bp between binding sites could support 

efficient recruitment of Met4, with only slight modulation by helical phasing.  

Intriguingly, we found that certain sequence contexts between the binding sites abolished 

gene activation.  These results yield insight into the influence of both binding site 

architecture and local DNA flexibility on gene activation, and can be used to refine 

computational predictions of gene expression from promoter sequences. 
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BACKGROUND 

The design principles of gene regulation are intricately complicated.  Differential 

expression of an organism’s genetic repertoire alters its phenotypic response to varying 

environmental conditions.  Just a few nucleotide changes in the regulatory region of a 

single gene can affect its expression level (Bond et al., 2004; Liao et al., 2004; Rockman 

et al., 2004).  By contrast, other genes are regulated more robustly and can tolerate 

multiple changes in their regulatory regions while preserving gene expression output 

(Ludwig et al., 2000; Wray et al., 2003).  The understanding of how sequence 

information determines transcriptional regulation should enable the design of highly 

sophisticated regulatory sequences that generate precise responses to specific conditions 

(Blackwood and Kadonaga, 1998; Davidson et al., 2002; Guet et al., 2002; Setty et al., 

2003; McAdams et al., 2004).  Yet to fully exploit the combinatorial logic inherent to 

gene regulation, we need more mechanistic details of how multiple binding sites are 

integrated within a regulatory region. 

In most eukaryotes, multiple transcription factors interact at transcriptional 

control regions to modulate levels of gene expression.  Each transcription factor is 

activated by cellular signals in response to changes in environmental conditions.  When 

bound to DNA, some transcription factor activators can anchor the assembly of 

multiprotein complexes that influence the recruitment of RNA polymerase.  Efficient 

assembly often depends on the formation of optimally spaced protein-protein interactions 

among transcription factors and auxiliary proteins (Merika and Thanos, 2001; Ogata et 

al., 2003; Remenyi et al., 2004).  Since transcription factors recognize specific sites on 

DNA, the distance between these binding sites can influence how transcription factors 

 



140 
 

interact at regulatory regions.  Overlapping sites may occlude two transcription factors 

from binding simultaneously, whereas sites spaced far apart require DNA looping for 

interactions to occur.  Thus, the precise spatial arrangement of transcription factors in 

regulatory regions influences the level of gene activation.  We use the term promoter 

architecture to refer both to distance constraints and to sequence context effects that 

govern interactions among transcription factor binding sites. 

Several mechanisms that govern transcription factor interactions have been 

previously described.  Transcription factors may bind cooperatively to adjacent sites in 

DNA, thus increasing the stability of the ternary DNA-protein complex.  Since this effect 

is mediated by direct protein-protein interactions, sites for cooperatively binding 

transcription factors are usually spaced within 20 bp of each other (e.g., Amin et al., 

1994; Hanes et al., 1994; Brazas et al., 1995; Drazinic et al., 1996; Boros et al., 

2003Boros et al., 2003).  Alterations in spacing between the binding sites can drastically 

reduce gene activation unless helical phasing is preserved.  Computational analyses 

suggest that helical phasing between predicted binding sites may be a general property of 

transcriptional control regions (Ioshikhes et al., 1999; Makeev et al., 2003). 

Alternatively, transcription factors may bind to DNA independently and 

cooperatively recruit a coactivator protein.  Co-recruitment of such activators is 

analogous to an “AND gate” in logic.  Coincident binding of two proteins increases the 

fidelity and specificity of signal detection (Merika and Thanos, 2001; Naar et al., 2001; 

Spiegelman and Heinrich, 2004).  The network of transcription factors that regulates 

sulfur gene derepression in yeast provides a model system to dissect the promoter 

architecture requirements for coactivator recruitment.  Among these transcription factors, 
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only the coactivator, Met4, contains an activation domain.  However, Met4 does not bind 

to DNA directly, but is recruited under sulfur limitation conditions by Cbf1 and Met28 to 

the MET16 promoter, as well as by Met28 and Met31 or Met32 on regions from the 

MET3 and MET28 promoters (Kuras et al., 1997; Blaiseau and Thomas, 1998).  In 

addition, two-hybrid studies with Met4 truncation mutants revealed distinct regions that 

mediate interaction with Cbf1 and Met31 or Met32.  Taken together, these studies 

suggest a model by which the co-activator Met4 is coordinately recruited by the 

transcription factors Cbf1, Met28 and Met31 or Met32 to the promoters of sulfur 

utilization genes.  However, the effects of distance constraints and sequence context 

between Cbf1 and Met31 or Met32 binding sites have not been characterized. 

Our goal is to understand how the constraints on promoter architecture differ for 

transcription factors that participate in coactivator recruitment, versus those that bind 

cooperatively.  In this work, we developed a synthetic promoter assay to characterize 

how various distances between Cbf1 and Met31 or Met32 binding sites influenced gene 

activation in response to methionine starvation.  The relative order of binding sites 

affected reporter gene activation.  We discovered that distance constraints on coactivator 

recruitment were more flexible than those for cooperatively binding transcription factors.  

Distances from 18 to 50 bp between binding sites could support efficient recruitment of 

Met4, with only slight modulation by helical phasing.  Intriguingly, we found that certain 

sequence contexts between the binding sites abolished gene activation.  We noted that the 

probability of coactivator recruitment could be affected by the bendability of the spacer 

sequence between transcription factor binding sites. 
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MATERIALS AND METHODS 

Plasmid construction 

Plasmid pDC204 was constructed in five steps.  1) The HIS3 coding region was 

PCR amplified from S. cerevisiae genomic DNA using the primers HIS3_F_BamHI and 

HIS3_R (Table 4.1) and cloned downstream of the MEL1 minimal promoter (PMEL1) by 

ligating into the BamHI + EcoRV-cleaved plasmid YIpMELβ2 from EUROSCARF 

(Melcher et al., 2000).  Two changes were then made to the MEL1 minimal promoter.  2) 

An NcoI site was introduced into PMEL1 31 bp upstream of the existing XhoI site by site-

directed mutagenesis (oligos MEL1_NcoI_W and MEL1_NcoI_C).  3) An out-of-frame 

ATG codon located 17 bp upstream of the HIS3 coding region was removed by site-

directed mutagenesis (oligos ATG_W and ATG_C).  4) The PMEL1-HIS3 fusion construct 

was PCR amplified (primers pMH14-F_ApaI & pMH14-R_AscI-SacII) and cloned into 

the ApaI + SacII-cleaved  plasmid pRS314 Sikorski and Hieter, 1989.  5) The 

Kluyveromyces lactis LEU2 gene was PCR amplified from pUG73 (primers pUG73_F 

and pUG73_R) (Gueldener et al., 2002) and cloned into the AscI site of the above 

plasmid.  Restriction digests confirmed the same-strand orientation of the HIS3 and 

LEU2 coding regions, and sequencing verified the promoter and coding regions. 

 
Promoter library construction 

Degenerate oligonucleotides were designed with a Cbf1 binding site at a fixed 

distance upstream of a Met31 or Met32 binding site (Operon) (Table 4.1).  Ten bp of 

flanking sequence upstream of the Cbf1 binding site and downstream of the Met31 or 

Met32 binding site were included from the wild-type MET16 promoter.  Double-stranded 

DNA was 
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Table 4.1)  List of oligonucleotides used in this study 

Plasmid construction 
Oligo name Sequence  (5’→3’)  [restriction sites underlined] 
HIS3_F_BamHI CGGGATCCCGAAGATGACAGAGCAGAAAGC 
HIS3_R CCTCGTTCAGAATGACACG 
MEL1_NcoI_W CCCTGAAAGGTTTTTCCATGGAATAGTCAGGACGC 
MEL1_NcoI_C GCGTCCTGACTATTCCATGGAAAAACCTTTCAGGG 
ATG_W GTAATAAAAGCAACGACGTTGAACGGATCCCGAAAG 
ATG_C 

 
CTTTCGGGATCCGTTCAACGTCGTTGCTTTTATTAC 

pMH14-F_ApaI ATAGGGCCCGGAAATTTGTGTAAAACCCCC 
pMH14-R_AscI-SacII AACAACCGCGGATAATGGCGCGCCCCTCGTTCAGAATGACACG
pUG73_F AAGGCGCGCCGCATAGGCCACTAGTGGATCTG 
pUG73_R AGTAAGGCGCGCCCAGCTGAAGCTTCGTACGC 

 

Promoter library construction 
Oligo name Sequence  (5’→3’)  [restriction sites underlined] 
MET16_reverse CCGCTCGAGTTACTGAAGTTG 
Cbf1_6_Met31 CATGCCATGGTATCATCATTTCACGTGGCCACAACTTCAGTAACTCGAGCGG 
Cbf1_8_Met31 CATGCCATGGTATCATCATTTCACGTGGNNCCACAACTTCAGTAACTCGAGCGG 
Cbf1_10_Met31 CATGCCATGGTATCATCATTTCACGTGGNNNNCCACAACTTCAGTAACTCGAGCGG 
Cbf1_12_Met31 CATGCCATGGTATCATCATTTCACGTGGNNNNNNCCACAACTTCAGTAACTCGAGCGG 
Cbf1_14_Met31 CATGCCATGGTATCATCATTTCACGTGGNNNNNNNNCCACAACTTCAGTAACTCGAGCGG 
Cbf1_16_Met31 CATGCCATGGTATCATCATTTCACGTGGNNNNNNNNNNCCACAACTTCAGTAACTCGAGCGG 
Cbf1_18_Met31 CATGCCATGGTATCATCATTTCACGTGGNNNNNNNNNNNNCCACAACTTCAGTAACTCGAGCGG 
Cbf1_20_Met31 CATGCCATGGTATCATCATTTCACGTGGNNNNNNNNNNNNNNCCACAACTTCAGTAACTCGAGCGG
Cbf1_22_Met31 CATGCCATGGTATCATCATTTCACGTGGN18CCACAACTTCAGTAACTCGAGCGG 
Cbf1_24_Met31 CATGCCATGGTATCATCATTTCACGTGGN20CCACAACTTCAGTAACTCGAGCGG 144



 

Cbf1_26_Met31 CATGCCATGGTATCATCATTTCACGTGGN22CCACAACTTCAGTAACTCGAGCGG 
Cbf1_28_Met31 CATGCCATGGTATCATCATTTCACGTGGN24CCACAACTTCAGTAACTCGAGCGG 
Cbf1_30_Met31 CATGCCATGGTATCATCATTTCACGTGGN26CCACAACTTCAGTAACTCGAGCGG 
Cbf1_32_Met31 CATGCCATGGTATCATCATTTCACGTGGN28CCACAACTTCAGTAACTCGAGCGG 
Cbf1_34_Met31 CATGCCATGGTATCATCATTTCACGTGGN30CCACAACTTCAGTAACTCGAGCGG 
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synthesized by Bio-X-Act polymerase (Bioline) from the primer MET16_reverse (Table 

4.1), digested with NcoI and XhoI and ligated into pDC204. 

 
Yeast strains and media 

Strain BY4742 (MATα his3∆1 leu2∆0 lys2∆0 ura3∆0) was obtained from 

Invitrogen.  Plasmids were introduced into this parental strain by lithium acetate 

transformation (Gietz and Woods, 2002) and subsequent selection on dropout media 

lacing leucine.  To measure growth rates in liquid culture, over 100 yeast transformants 

containing plasmids of the same promoter size were pooled and cultured overnight in 

dropout media lacking leucine.  To induce reporter gene expression, yeast cultures were 

diluted to early log phase (OD600 ~ 0.04) in dropout media lacking leucine, histidine and 

methionine, then grown at 30°C with shaking at 250 rpm.  After 3 hours, each culture 

was split in half and 3-aminotriazole (Sigma) was added to one culture.  Timepoints were 

commenced 2.5 hours after 3-aminotriazole addition. 

 

Association of promoter architectures with gene expression changes 

Gene expression data for sulfur-limiting conditions was obtained from the 4 

replicates of cadmium treatment reported by Fauchon et al., 2002, as well as the first 4 

timepoints of the amino acid starvation timecourse from Gasch et al., 2000.  An 

activation level was summarized for each gene by averaging the log base 2 expression 

ratios.  Matches to Cbf1 (TCACGTG) and Met31 or Met32 (TGTGGC) consensus 

sequences were scored for each promoter, which was defined as the 500 bp upstream of 

the translation start site.  For various binding site combinations, the average activation 

level was calculated for genes that shared the appropriate combinations of binding sites.   
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RESULTS 

Annotated promoters of sulfur-regulated genes contain closely spaced binding sites 

We examined the promoter architectures of 20 genes in S. cerevisiae that are 

annoated as being co-expressed under sulfur-limiting conditions (Thomas et al., 1992; 

Balakrishnan et al., 2005).  All of these promoters contained Cbf1 and Met31 or Met32 

binding sites that were perfectly conserved among at least 3 of 4 closely-related yeast 

species (Cliften et al., 2003; Kellis et al., 2003) (Figure 4.1).  Each sulfur-regulated 

promoter included a Cbf1 binding site upstream of a Met31 or Met32 binding site.  A 

histogram of distances between the closest pair of Cbf1 and Met31 or Met32 binding sites 

showed a peak between 10 and 30 bp (Figure 4.2A).  This peak suggested an optimal 

distance between the transcription factors was necessary for efficient Met4 recruitment.  

When investigating whether the distances between the closest pairs of binding site were 

helically phased, we could not detect a significant enrichment of distances on a certain 

face of DNA (Figure 4.2B).  Finally, the vast majority of annotated promoters contained 

Met31 or Met32 binding sites within 100 to 350 bp upstream of the translation start site 

(Figure 4.2C).  Thus, computational sequence analyses suggests that distance constraints 

are important for the recruitment of the coactivator, Met4. 

 
Cbf1 binding sites upstream of Met31 or Met32 binding sites yielded maximal 

activation 

A larger collection of sulfur-regulated promoters would provide more statistical 

power to define key components of promoter architecture.  To explore a sequence space 

more diverse than that found in the yeast genome, we developed a synthetic genetic 

approach to select for sulfur-regulated promoters from a plasmid library (Figure 4.3).  
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Figure 4.1) Promoter architectures of annotated sulfur-regulated genes 

 

Conserved binding sites for Cbf1 (blue rectangles, TCACGTG), Met31 or Met32 

(green circles, TGTGGC), Gcn4 (orangle triangles, TGA[C|G]TCA) and TBP (TATAA) 

are drawn to scale in the indicated intergenic regions.  A binding site was considered 

conserved if at least 3 invariantly copies were aligned in a multiple sequence alignment 

of closely-related Saccharomyces species (Cliften et al., 2003; Kellis et al., 2003). 
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Figure 4.2) Minimum distances between conserved Cbf1 and Met31 or Met32 

binding sites in annotated sulfur-regulated promoters 

 

 

 

 (A) Histogram of minimum distances between a Cbf1 binding site (TCACGTG) 

and a Met31 or Met32 (TGTGGC) binding site.  Distances were calculated from the 

center of each binding site, as indicated by the arrows between the consensus sequences.  

(B) Helical wheel projection of minimum distances.  Cbf1 binding sites were aligned at 

the top of the helical wheel (position 0).  Each green circle represents the remainder of a 

minimum distance from (A) divided by 10.5 bp.  Since the helical pitch of DNA is 10.4 

bp, each circle approximates the position of the Met31 or Met32 binding site relative to 

the Cbf1 binding site.  (C) Histogram of distances between the Met31 or Met32 binding 

sites from (A) and the translation start site. 
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Figure 4.3) Synthetic promoter system 

 

 

 

 

A minimal promoter from the MEL1 gene (PMEL1) was fused upstream of a HIS3 

reporter gene on a single-copy plasmid.  Selected restriction enzyme sites are labeled 

with their coordinates.  Various combinations of Cbf1 and Met31 or Met32 binding sites 

were inserted between the NcoI and XhoI restriction enzymes sites in the promoter.

 



151 

We engineered a single-copy plasmid that fused a minimal promoter upstream of the 

HIS3 reporter gene.  To test their transcriptional activation potential, different promoter 

architectures were embedded in the context of the minimal promoter from the 

S. cerevisiae MEL1 gene.  This promoter was chosen for its low background expression, 

compared to promoters derived from the S. cerevisiae CYC1 gene (Melcher et al., 2000).  

Promoter architectures with combinations of regulatory sequences that were sufficient to 

induce expression of the HIS3 reporter gene enabled the parental yeast strain BY4742 to 

grow in media lacking histidine.  In addition, semiquantitative measurements of HIS3 

expression can be assayed by titration with 3-amino-1,2,4-triazole (3-AT), a competitive 

inhibitor of the His3 gene product (Horecka and Sprague, 2000).  Faster growth rates in 

the presence of larger concentrations of 3-AT correspond to higher expression levels of 

the HIS3 gene. 

We sought to define the minimal regulatory information that was sufficient to 

induce reporter gene expression in the absence of methionine.  Neither the minimal 

promoter alone nor a single Met31 or Met32 binding site could induce HIS3 expression in 

inducing conditions with 10 mM 3-AT (Figure 4.4A).  A single Cbf1 binding site 

supported weak growth on 10 mM 3-AT.  In the wild-type MET14 promoter, a Cbf1 

binding site was found 35 bp upstream from a Met31 or Met32 binding site, as measured 

by center-to-center distance.  Two Cbf1 binding sites placed at the same distance showed 

moderate HIS3 expression.  In contrast, two Met31 or Met32 binding sites were unable to 

support growth.  A promoter with a Cbf1 binding site upstream of a Met31 or Met32 

binding site showed the highest level of HIS3 expression, whereas a promoter with the 

reverse order of binding sites was unable to support growth on 10 mM 3-AT. 

 



152 

Figure 4.4) Reporter gene expression driven by various combinations of Cbf1 and 

Met31 or Met32 binding sites matches computational predictions 
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Figure 4.4  (continued) 

(A)  Serial dilutions of yeast containing a reporter plasmid with a different 

binding site combination, labeled as follows.  V: vector alone, C: Cbf1 binding site, M: 

Met31 or Met32 binding site, C2: Two Cbf1 binding sites spaced by 35 bp, M2: Two 

Met31 or Met32 binding sites spaced by 35 bp, CM: Cbf1 binding site placed 35 bp 

upstream of a Met31 or Met32 binding site, MC: Met31 or Met32 binding site placed 35 

bp upstream of a Cbf1 binding site.  Yeast strains were grown on the indicated media for 

5 days at 30°C.  (B) Average gene induction in sulfur-limitation conditions associated 

with endogenous genes containing various promoter architectures.  An induction level for 

each gene was calculated as the average log base 2 expression ratio from previously 

published gene expression studies (Gasch et al., 2000; Fauchon et al., 2002).  Induction 

levels were averaged over sets of genes that shared the indicated binding site 

combinations in the 500 bp upstream of their translation start sites. 
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These results confirmed computational predictions of the activation potentials for the 

various promoter architectures (Figure 4.4B).  Using published microarray studies of 

sulfur limitation conditions, we calculated the average induction of genes whose 

promoters shared combinations of Cbf1 or Met31 or Met32 binding sites (Gasch et al., 

2000, Fauchon et al., 2002).  On average, Cbf1 binding sites were more strongly 

associated with gene activation than Met31 or Met32 binding sites.  Strikingly, Cbf1 and 

Met31 or Met32 binding sites were associated with a synergistic effect on gene 

activation, but only when the Cbf1 binding site was found upstream.  

 
High cooperativity between Cbf1 and Met31 or Met32 binding sites spaced at least 

18 bp apart  

We predicted that efficient recruitment of Met4 to the promoters of sulfur 

utilization genes should depend on the spacing between Cbf1 and Met31 or Met32 

binding sites.  To investigate the effect of varied spacing on reporter gene activation, we 

constructed a set of promoter libraries that differed by 2-bp increments from 6 bp to 34 

bp, as well as 5-bp increments from 40 bp to 50 bp.  Each promoter library had a fixed 

size but degenerate nucleotide sequences between the Cbf1 and Met31 or Met32 binding 

sites.  The binding sites were flanked by 10 bp of sequence from the MET16 promoter of 

S. bayanus, which lacks an adjacent Gcn4 site.  By pooling hundreds of yeast 

transformants for each library, we reasoned that the contribution of nucleotide 

composition on Met4 recruitment and subsequent gene activation would be averaged out.  

We thus anticipate that growth rates for each promoter library should largely represent 

the aggregate effect of a certain distance on reporter gene expression. 
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Measurements of the growth rates of such pooled populations determined that 

synergistic activation required a minimum distance between Cbf1 and Met31 or Met32 

binding sites (Figure 4.5).  As a negative control, yeast harboring promoter libraries of 

varying sizes grew at similar rates in the absence of 3-AT, indicating low levels of leaky 

transcription from the reporter construct.  Expression levels of the HIS3 reporter gene 

were titrated with the addition of 1 mM 3-AT; similar results were obtained with different 

concentrations of 3-AT (data not shown).  Binding sites whose centers were spaced fewer 

than 14 bp apart promoted weak reporter gene activation.  At these close distances, Cbf1 

and Met31 or Met32 may be sterically constrained from assembling a complex with 

Met4.  Reporter gene activation rose sharply as the distance between binding sites was 

increased from 14 bp to 18 bp.  The highest levels of gene activation were observed for 

pooled promoter libraries with binding sites spaced between 18 bp and 40 bp apart, 

suggesting that Cbf1 and Met31 or Met32 were optimally spaced within this distance 

range to interact with their respective docking sites on Met4, enabling higher levels of 

Met4 recruitment and subsequent gene activation.  Helical phasing modulated the average 

growth rate by less than 25%: promoter libraries at a distance of 20 had an average 

growth rate of 0.36 doublings per hour, whereas promoter libraries at a distance of 26 had 

an average growth rate of 0.29 doublings per hour (Figure 4.5).  Although promoter 

libraries with distances greater than 40 bp showed a gradual decrease in reporter gene 

activation, the average growth rates observed were still higher than for promoter libraries 

with distances fewer than 16 bp.  
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Figure 4.5) Average growth rates for pooled sequence libraries with defined 

distances between Cbf1 and Met31 or Met32 binding sites 
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Sequence context between binding sites can inhibit gene activation 

In addition to characterizing the aggregate effects of binding site spacing, we also 

examined the effects of different spacer sequences on reporter gene activation.  We 

assayed the growth rates for individual yeast transformants on solid media containing 10 

mM or 25 mM 3-AT.  Each transformant harbored a promoter with a different, random 

sequence between the Cbf1 and Met31 or Met32 binding sites.  We observed 

reproducible variability in growth rates among transformants with the same distance, but 

different spacer sequences, between Cbf1 and Met31 or Met32 binding sites (Figure 4.6).   

At each distance surveyed, a certain proportion of intervening sequences was 

compatible with reporter gene expression.  Since the pooled growth rates in liquid media 

were qualitatively similar over this distance range, we interpret these proportions as the 

probability that a random intervening sequence would support gene activation at a given 

distance.  At a distance of 12 bp between sites, less than 30% of the sequences supported 

reporter gene activation.  At distances between 16 and 50 bp, the proportion of 

transformants that showed moderate to high levels of growth on 25 mM 3-AT varied 

from 38% to 60%.  We observed a modest dependence of this proportion on helical 

phasing in the distance between binding sites.  

To investigate what features of spacer sequences correlated with gene activation, 

we sequenced a sample of promoters with distances of 12 bp and 20 bp between the Cbf1 

and Met31 or Met32 binding sites (Table 4.2).  Promoters that supported gene activation 

(positives) were similar in nucleotide composition to promoters that inhibited gene 

activation (negatives).  In addition, we could not find trimers or tetramers that were 

enriched in the positive or negative promoter sets.  The most discriminating feature of  
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Figure 4.6) Different sequences between Cbf1 and Met31 or Met32 binding sites 

show a range of reporter gene activation 
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Figure 4.6  (continued) 

(A) Serial dilutions of yeast containing reporter plasmids with the same distance 

between binding sites, but different spacer sequences.  Yeast strains were grown on the 

indicated media for 5 days at 30°C.  (B) Proportions of transformants that displayed 

moderate to high levels of growth on solid media with 10 mM or 25 mM 3-AT.  For each 

distance between binding sites, growth rates of 72 transformants with different spacer 

sequences were assayed with serial dilutions.  Average growth rates in liquid media with 

1 mM 3-AT, as in Figure 3, is also shown for comparison purposes. 
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Table 4.2) Promoter sequences associated with reporter gene activation 

(A) Center-to-center distance of 12 bp 

Clone Growth 
rate 

Intervening 
sequence 

5 - TGGGTT 
8 - GAGGCG 
20 - GAGCAT 
22 - TGGATG 
30 - GTGAGT 
32 - AAAGAG 
33 - GTGACT 
35 - TGGTGT 
36 - AGAATG 
44 - TGCACT 
47 - AATTGG 
48 - AAACTC 
3 + TAAGAG 
6 + CATAGT 
19 + CGGTCC 
25 + GTTAAT 
42 + CGTCGT 
2 ++ CGCGTT 
4 ++ AACCGC 
7 ++ TGAGGC 
27 ++ CAAACG 
43 ++ CCATGG 
46 ++ GGTTGT 
18 +++ ATTGGC 
23 +++ AGGCAA 
29 +++ ATATAT 
31 +++ AAATGA 
34 +++ TTGTGA 
 

(B) Center-to-center distance of 20 bp 

Clone Growth 
rate 

Intervening sequence 

2 - GAGTCTGATGGTCT 
7 - TGGGTTGTCAACGG 
23 - GGGCAATCGCGATG 
28 - CGTGGGGTGCTTAG 
31 - TATAAGGCGTTGGG 
47 - CGAGGGGAAAACAG 
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48 - TGAGGAGATGAAGT 
68 - GAAGTGAGGAGCGG 
69 - AAGAATTACCCGGT 
3 + CCTGATGCCTACAG 
16 + CAAGGCTAGGAGCG 
24 + GCGCAGGATCGGCT 
67 + GGGTGTGAAGGGCT 
9 ++ TGAGCTCTTGACAT 
14 ++ GGTTCAACGTTACT 
30 ++ GCAAGGAGCGAGGG 
32 ++ AGGGGAACGGAGAG 
33 ++ TAGTGGGATTTGCG 
34 ++ GGTGACTAGGCCTC 
46 ++ GAAGTGGATTGCGT 
5 +++ GGACGTAATTTCAA 
8 +++ TTTACAAACTAGGG 
10 +++ CGATGTACTGCCAA 
11 +++ GTTTGTTGGGATGG 
12 +++ GGCATTTATGGGAA 
13 +++ CCCTTCCTGTGGGC 
15 +++ GGTGGTTCATGGGA 
18 +++ CGCGCGGGCGTCTT 
25 +++ TCAGGGTTCAGCCA 
26 +++ CGCGCCGAACGGGC 
27 +++ TAGTGTCGGGGGCG 
29 +++ GTGGTAGACGCTGC 
35 +++ TTATGGTACCACCA 
36 +++ TCATGCGTCGTACG 
37 +++ TTGCTGGCAAGGAT 
38 +++ AAAAGAGGAGATTC 
39 +++ ATGTCGTCATGTGT 
40 +++ AATGGCATGCTGCG 
41 +++ AGAGGCAGTATCAA 
43 +++ GTTTGGGTCCGGGC 
72 +++ GGCATTTATGGGAA 
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negative promoters was a shared guanine or thymine immediately 5’ to the Met31 or 

Met32 binding site in 15 of 17 examples of distance 12, as well as in all 13 examples of 

distance 20 (Figure 4.7A).  However, about half of the positive examples contained a 

guanine or thymine at that position, as expected. 

We searched for additional residues that could discriminate among sequences that 

shared a guanine or thymine at the most 3’ position of the spacer region.  We computed 

the information content at each residue within the positive and negative examples of 

spacer sequences using WebLogo (Schneider and Stephens, 1990; Crooks et al., 2004).  

By focusing on the three most informative positions, we derived nucleotide combinations 

that predicted negative promoters with an overall sensitivity of 80% and a specificity of 

89% (Table 4.3). 

To test whether the A11-T17 nucleotide combination was sufficient to inhibit gene 

activation, we identified five promoter sequences with a B11-T17 combination and 

converted the nucleotide at position 11 to an adenine by site-directed mutagenesis.  For 

four of the five strains, similar levels of reporter gene activation were driven by the 

original and mutant promoters, as assayed by serial dilutions on media containing 10 mM 

or 25 mM 3-AT (Figure 4.7B).  Only strain #14 showed decreased reporter gene 

activation by the mutated promoter in the presence of 10 mM 3-AT.  Thus, the effects of 

sequence context are not encoded by individual positions within the primary nucleotide 

structure. 
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Figure 4.7) Discriminating nucleotides fail to inhibit reporter gene activation in vivo 

 

 

 

Negatives Positives 
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Figure 4.7  (continued) 

(A) Sequence logos of intervening sequences between Cbf1 and Met31 or Met32 

binding sites were generated with WebLogo (Crooks et al., 2004).  At each position, the 

height of the nucleotide corresponds to its frequency in the sequenced sample.  (B) Serial 

dilutions of yeast containing reporter plasmids with or without an adenine at position 11. 

 

 

 

Table 4.3) Nucleotide combinations that correlate with lack of reporter gene 

activation 

 
Size Sequence 

combination 
Sensitivity Specificity 

12 R5-G9 6 / 6  (100%) 6 / 7  (86%) 
12 K6-T9 8 / 9  (89%) 8 / 9  (89%) 
20 W8-G17 5 / 8  (62%) 5 / 5  (100%) 
20 A11-T17 5 / 5  (100%) 5 / 6  (83%) 
 
IUPAC symbols: R = A or G; K = A or C; W = A or T.  
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DISCUSSION 

Promoter architecture features of yeast sulfur utilization genes 

We have developed a synthetic promoter assay to test how various features of 

promoter architecture affected activation of a HIS3 reporter gene in the context of a 

common minimal promoter.  We applied this system to characterize the collaborative 

recruitment of the coactivator, Met4, by the transcription factors, Cbf1 and Met31 or 

Met32, in response to methionine starvation.  The relative order of binding sites was 

important, since a Cbf1 binding site was required upstream of a Met31 or Met32 binding 

site for full activation.  Two Cbf1 binding sites could moderately activate reporter gene 

expression, yet the mechanism for this enhanced activation is unclear.  Synergistic 

activation of reporter gene expression occurred when Cbf1 and Met31 or Met32 binding 

sites were spaced at least 18 bp apart.  Notably, the minimum distance required for 

coactivator recruitment is further than the maximum range of cooperatively binding 

transcription factors.  Finally, we discovered that different sequence contexts between 

binding sites produced considerable heterogeneity of reporter gene activation. 

These promoter architecture requirements reveal insights on regulatory 

mechanisms for the coactivator, Met4.  The influence of Cbf1 and Met31 or Met32 

binding site order on reporter gene activation implies that the spatial orientation of the 

Met4 activation domain is required for the recruitment of downstream targets.  However, 

the rather flexible distance constraints between binding sites suggests that Met4 

recruitment may not require simultaneous protein-protein interactions among the bound 

transcription factors.  Intriguingly, the recruitment of Met4 to a common minimal 

promoter seems to depend more on the sequence context between Cbf1 and Met31 or 
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Met32 binding sites than on the distance between them.  In light of these results, previous 

studies that varied distances between transcription factor binding sites should be 

reassessed, since they usually considered only a single sequence context for each 

distance.  In addition, promoter classification programs should strive to incorporate 

sequence context effects into their algorithms. 

 

Possible effects of sequence context between transcription factor binding sites 

Sequence context could alter Met4 recruitment in several ways.  First, residues 

adjacent to binding sites could reduce the binding affinity of Cbf1 or Met31 or Met32.  

Accordingly, we found that all spacer sequences that inhibited reporter gene activation 

contained a guanine or thymine immediately 5’ to the Met31 or Met32 binding site.  

Secondly, the DNA bendability of the spacer sequence could alter the conformation of 

Cbf1, which bends DNA by approximately 68° (Niedenthal et al., 1993).  

Conformational changes in Cbf1 could affect its protein-protein interactions with Met28 

or Met4, thus reducing Met4 recruitment.  A requirement for DNA bendability on 

protein-protein interactions has been recently shown for the transcription factor, Mcm1, 

which bends DNA by 66°, comparable to the bend angle induced by Cbf1 (Lim et al., 

2003).  A point mutant in Mcm1 with a DNA bending angle of 46° had a lower affinity 

for cooperative binding with Fkh2 than a mutant with a DNA bending angle of 49°, 

suggesting that a certain threshold of DNA bending was required for ternary complex 

formation in vitro (Lim et al., 2003).  Circular permutation assays on promoters with 

different sequence contexts could test whether the extent of bendability correlates with 
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reporter gene activation.  In addition, chromatin immunoprecipitation studies could 

identify the transcription factors whose binding in vivo is affected by sequence context. 

Whereas the influence of sequence context on gene activation has been widely 

reported (e.g., Elledge and Davis, 1989; Mai et al., 2000), the key determinants of 

sequence context have been poorly defined.  Except for the residue adjacent to the Met31 

or Met32 binding site, we could not find features of the primary nucleotide structure that 

correlated with gene activation.  Previous studies have reported that protein-DNA 

interactions can be affected by physicochemical properties of DNA, such as twist (Olson 

1995).  Although we assessed several dinucleotide parameters, we could not find any 

significant correlation between the average parameter value of a spacer sequence and 

reporter gene activation (data not shown) (Olson et al., 1998). 

A couple of follow-up experiments could better characterize key features of 

sequence context.  Whereas it is not feasible to test all possible sequence variants 

between a pair of transcription factor binding sites, a sample of several hundred different 

sequences would provide more statistical power to infer key determinants of sequence 

context.  Fluorescence activated cell sorting of yeast cells that expressed green 

fluorescent protein would provide a higher throughput method to assay the effect of 

sequence variants on reporter gene expression.  Another approach could investigate the 

minimum number of nucleotide changes that render a promoter unable to drive reporter 

gene expression.  We have identified several pairs of active and inactive sequences that 

differ by six nucleotides.  Therefore, growth assays for all 64 possible recombinants 

between the sequence pairs would indicate which positions are necessary for reporter 

gene activation. 
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In order to sample a large number of promoter architectures, we assayed reporter 

gene expression from a single-copy plasmid, which yields over 10,000-fold higher 

transformation efficiency than chromosomal integration.  We have not explored how the 

flanking sequence composition of wild-type promoters may affect the basal or Met4-

induced nucleosomal accessibility of Cbf1 and Met31 or Met32 binding sites in the 

genome.  Cbf1 can also modulate nucleosome positioning and recruit the Isw1 chromatin 

remodeling complex (Moreau et al., 2003; Kent et al., 2004).  Thus, additional 

determinants of local sequence context that affect the binding or DNA bending of Cbf1 

may influence Met4 recruitment and gene activation in a chromosomal context.  By 

integrating minimal promoters into the MET16 locus of an isw1∆ mutant strain, we could 

dissect the relative contribution of chromatin remodeling on Met4 recruitment.  
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PREFACE 

Transcriptional regulatory networks have two types of components: transcription 

factors and target genes.  In the previous chapter, I described experiments to characterize 

how promoter architecture influences the regulation of yeast sulfur utilization genes.  In 

this chapter, I focus on the transcriptional and post-translational regulation of the 

duplicated transcription factor pair, Met31 and Met32.  I also developed a computational 

approach to systematically evaluate theories about the evolution of transcription factor 

paralogs. 

 

 



171 

BACKGROUND 

Gene expression studies of different yeast species have revealed that different 

groups of genes are co-expressed in response to similar environmental conditions (Tsong 

et al., 2003, Rustici et al., 2004).  However, the mechanisms by which groups of genes 

become regulated by different transcription factors are poorly characterized.  One 

possible mechanism invokes the gain or loss of binding sites in the transcriptional 

regulatory regions of different genes that are regulated by the same transcription factor 

(Wray et al., 2003).  Moreover, amino acid changes in transcription factors may alter 

their regulatory specificity in various ways (Hsia and McGinnis, 2003).  Changes to the 

DNA binding domain may alter a transcription factor’s sequence specificity and thus its 

affinity for binding sites in different target genes (Gasch et al., 2004).  In addition, the 

gain of protein-protein interactions among transcription factors may recognize composite 

elements and impose a novel regulatory combination in transcription control regions that 

can be subject to selection (Lohr et al., 2001). 

Duplication of transcription factors creates regulatory redundancy, which may 

relax selection pressures on amino acid sequences.  In the adaptive evolution model, one 

of the transcription factor paralogs retains the ancestral regulatory function, whereas the 

other paralog may either be lost by mutation or gain a new function at a low frequency 

(Ohno, 1970).  However, a surprisingly high fraction of transcription factor paralogs are 

retained in extant species without obviously new functions, despite adequate evolutionary 

time for the loss of a paralog to occur (reviewed in Force et al., 1999).  This conundrum 

led to the proposal of the subfunctionalization model, which speculates that each paralog 

retains subsets of the ancestral functions (Force et al., 1999).  Both paralogs would thus 
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be required to fully complement the ancestral transcription factor’s regulatory functions.  

Notably, some transcription factor families have been amplified in certain clades, such as: 

the zinc binuclear cluster in fungi (Akache et al., 2001); nuclear hormone receptors in 

metazoans (Escriva et al., 1997); MADS box family in plants (Becker and Theissen, 

2003).  It is tempting to speculate that the amplification of transcription factor families 

may enable the evolution of specialized regulatory networks that lead to phenotypic 

diversity. 

Experimental studies on several pairs of duplicated transcription factors in 

Saccharomyces cerevisiae concur that these paralogs have overlapping, but distinct, 

functions.  Although deletions of single transcription factors are often viable due to 

partial complementation by the other paralog, genetic and biochemical studies often 

indicate that each paralog can have different roles.  For instance, the winged helix 

transcription factors, Fkh1 and Fkh2, share 47% sequence identity and identical DNA 

binding specificities (Hollenhorst et al., 2000; Zhu et al., 2000).  Fkh1 regulates donor 

type switching by binding to the recombination enhancer (Sun et al., 2002), whereas 

Fkh2 interacts with Mcm1p to regulate cell cycle genes (Boros et al., 2003).  These 

proteins also have opposing roles in regulating transcriptional elongation and termination 

(Morillon et al., 2003).  In another example, the zinc finger transcription factors, Met31 

and Met32, are 46% identical at the amino acid level, though they bind the same 

recognition sequence with different affinities (Blaiseau et al., 1997).  Genetic studies 

suggest different roles for the paralogs with respect to the ubiquitin ligase, Met30, which 

is a negative regulator of Met4.  A met30∆ met31∆ strain is synthetically lethal, whereas 

a met30∆ met32∆ mutant is a methionine prototroph (Patton et al., 2000). Taken together, 
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these studies suggest that transcription factor paralogs may attain divergent functions by 

interacting with different proteins.  

I sought evidence for distinct regulatory functions between duplicated 

transcription factor pairs in Saccharomyces cerevisiae.  For each pair of duplicated 

transcription factors, I counted the number of amino acid substitutions that occurred in 

the divergence of each paralog from an outgroup single-copy homolog.  I looked for 

cases in which one paralog had accumulated statistically more substitutions that the other 

paralog.  In addition, I investigated whether Met31 and Met32 interacted with different 

proteins in vivo. 
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MATERIALS AND METHODS 

Sequence alignments for duplicated transcription factors 

The published genome sequences of Kluyveromyces waltii (Kellis et al., 2004) 

and Ashbya gossypii (Dietrich et al., 2004) were obtained from Genbank.  Both genome 

sequencing projects assigned homology between each predicted open reading frame and a 

corresponding gene from Saccharomyces cerevisiae.  Thirty-one pairs of duplicated 

transcription factors in S. cerevisiae were matched with orthologs in K. waltii and A. 

gossypii.  Amino acid sequences of paralogous pairs were aligned with T-COFFEE, along 

with the homolog from either K. waltii or A. gossypii included as an outgroup sequence 

(Notredame et al., 2000).  The coordinates of DNA binding domains in each amino acid 

sequence were annotated by the Pfam web server (Bateman et al., 2004). 

 
Tajima relative rates test for accelerated evolution 

The Tajima relative rates test evaluates whether differential rates of evolution has 

occurred along one species branch (Tajima, 1993).  This test is essentially a chi-square 

test with the null hypothesis that the number of amino acid changes along each branch are 

equivalent.  From the amino acid alignment, let m1 represent the number of amino acid 

differences between an outgroup sequence and one of the paralogs; let m2 represent the 

number of amino acid differences between the outgroup sequence and the other paralog.  

Gapped positions were excluded from this analysis.  The Tajima test statistic is given by: 

χ 2 =
(m1 − m2 )2

m1 + m2
which is chi-square distributed with one degree of freedom.  Correction for multiple 

testing involved controlling the False Discovery Rate with q < 0.01 (Benjamini and 

Hochberg, 1995).  Significantly large values of the test statistic would reject the null 

 



175 

hypothesis, and thus indicate that more mutations have accumulated along one branch 

than expected by chance. 

 
Maximum-likelihood estimates of sequence divergence (PAML) 

Another test for differential rates of evolution reconstructs the sequence of the 

common ancestor by maximum likelihood under a model for sequence evolution.  Given 

the three-way amino acid alignments, the PAML software package infers the rate of 

amino acid divergence along each branch from the common ancestor to each extant 

sequence (Yang, 1997).  Significantly large rate differences indicate changes in the rate 

of evolution along the corresponding branch. 

 
Yeast cell extracts from Met31FLAG and Met32FLAG overexpression strains 

Yeast strain YMT235 was transformed with plasmids containing MET31 or 

MET32 genes with C-terminal FLAG epitope tags under the control of a galactose-

inducible promoter (Ho et al., 2002).  Cells were grown to early log phase (OD600 = 0.25) 

in 500 mL of sulfur-free B media with 50 µM methionine and 2% raffinose (Cherest and 

Surdin-Kerjan, 1992).  At this point, epitope-tagged transcription factors were induced by 

adding galactose to a final concentration of 2%.  After 1 hour, the cultures were split in 

half, and methionine was added to one culture to a final concentration of 1 mM.  Cells 

were pelleted and frozen in liquid nitrogen after resuspension in 1 mL low-salt 

RadioImmunoPrecipitationAssay (RIPA) buffer (50 mM Tris pH 7.5, 50 mM NaCl, 1% 

deoxycholic acid, 1% Triton X-100, 0.1% SDS, 10 mM sodium pyrophosphate, 5 mM 

EDTA, 5 mM EGTA, 50 mM sodium fluoride, 0.1 mM orthovanadate, 1 mM PMSF, 2 

µg/mL protease inhibitors and 50 µg/mL ethidium bromide).  Whole cell extracts were 
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recovered after cell lysis by vortexing with glass beads.  Total protein recovery was 

assayed by Bradford reagent. 

 
Co-immunoprecipitation  

For immunoprecipitation of Met31FLAG or Met32FLAG, 5 mg of total protein was 

incubated with 50 µL of anti-FLAG M2-agarose affinity beads (Sigma) at 4°C for 1.5 

hours.  After 3 washes with 1 mL low-salt RIPA buffer, bound proteins were resuspended 

in 10 µL of sample buffer and denatured by boiling for 5 min.  Protein samples were 

resolved on 10% polyacrylamide gels and transferred to PVDF membranes.  Western 

blots were conducted with rabbit polyclonal antibodies to Met28 or Met4 (a gift from 

Traci Lee and Mike Tyers).  The anti-Met28 antibody was diluted to 1:200, and the anti-

Met4 antibody was diluted 1:1000 in Tris-buffered saline (10 mM Tris pH 7.5, 150 mM 

NaCl) with 0.05% Tween-20 and 5% milk.  Antibodies were incubated for 1.5 hr at room 

temperature, followed by 3 washes with Tris-buffered saline with 0.05% Tween-20.  A 

1:10,000 dilution of donkey anti-rabbit antibody conjugated with horseradish peroxidase 

was incubated for 1.5 hr at room temperature, followed by 3 washes in Tris-buffered 

saline with 0.05% Tween-20, then 2 washes in Tris-buffered saline without Tween-20.  

Antibody staining was conducted with SuperSignal West Pico Chemiluminescent 

Substrate (Pierce). 
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RESULTS 

Some transcription factor paralogs show differential rates of evolution 

Each pair of duplicated transcription factors in S. cerevisiae was aligned with 

their single-copy homolog from either K. waltii or A. gossypii as an outgroup sequence.  

Two computational tests evaluated whether differential rates of sequence evolution 

occurred along a branch leading to one of the S. cerevisiae paralogs.  Among 31 

transcription factor paralogs tested, the Tajima test identified 13 pairs with significantly 

different rates of evolution when the K. waltii ortholog was used as the outgroup 

sequence, of which 8 pairs also showed significantly different rates of evolution when the 

A. gossypii ortholog was used as the outgroup sequence (Table 5.1).  To assess whether 

these changes may affect the binding specificity of the transcription factor paralog, this 

analysis was repeated on alignments of the DNA binding domains only.  Only 4 pairs 

showed significantly different rates of evolution when the K. waltii ortholog was used as 

the outgroup sequence, of which 3 were also significant using A. gossypii as the outgroup 

(Table 5.2).  Since DNA binding domains are typically short (less than 60 amino acids) 

and the most highly conserved regions of transcription factors, the lower number of 

significant differences may simply reflect decreased power of the chi-square test.  

Finally, results from the maximum likelihood inference of branch lengths with PAML 

largely agreed with the Tajima test for accelerated evolution (Table 5.1). 
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Table 5.1) Tajima test for differential rates of evolution on full-length proteins 

    # of amino 
acid changes 

from K. waltii 
sequence 

 PAML branch 
length from 

common ancestor; 
K. waltii outgroup 

Gene 1 Gene 2 Tajima 
χ2

Ungap
-ped 

length 

Gene 
1 

Gene 
2 

p-value Gene 1 Gene 2 

HMS2 SKN7 74.3 264 110 14 7 × 10-18  1.61 0.28 
EDS1 RGT1 73.5 756 180 50 1 × 10-17  1.15 0.33 
GIS1 RPH1 30.5 602 145 65 4 × 10-8   0.68 0.35 
CAD1 YAP1 22.7 295 80 30 2 × 10-6  1.63 0.67 
MIG1 MIG2 20.3 254 21 62 7 × 10-6   0.72 1.96 
RLM1 SMP1 18.5 372 17 53 2 × 10-5     
ECM22 UPC2 15.1 664 93 47 1 × 10-4   0.50 0.29 
CUP2 HAA1 12.5 136 35 11 4 × 10-4 1.31 0.42 
MSN2 MSN4 11.9 439 27 59 6 × 10-4 0.49 0.81 
ACE2 SWI5 11.2 566 58 100 8 × 10-4   0.50 0.85 
DIG1 DIG2 10.6 236 21 48 1 × 10-3 0.80 1.23 
FKH1 FKH2 8.1 226 41 19 5 × 10-3   0.54 0.28 
AFT2 RCS1 7.9 297 52 27 5 × 10-3 0.80 0.51 
YML 
081W 

ZMS1 6.9 1040 106 148 9 × 10-3 0.41 0.54 

NRG1 NRG2 5.6 113 4 14 0.02 0.11 0.57 
CIN5 YAP6 4.5 163 8 19 0.03 0.46 0.78 
YHP1 YOX1 4.1 260 35 20 0.04 0.65 0.46 
ACA1 CST6 3.4 217 27 15 0.07 0.48 0.24 
YBP1 YBP2 3.3 566 91 68 0.07 0.81 0.62 
MET31 MET32 2.5 125 17 9 0.12 0.66 0.38 
DAL80 GZF3 1.4 203 14 21 0.24 0.38 0.67 
NHP6A NHP6B 1.0 33 0 1 0.32 0.06 0.04 
STP3 STP4 0.3 208 15 12 0.56 0.28 0.23 
SUT1 SUT2 0.0 204 24 25 0.89 0.56 0.60 
YKL 
222C 

YOR 
172W 

0.0 638 93 94 0.95   

 
Bold entries denote the transcription factor paralog with differential rates of 

evolution as assessed with the Tajima χ2 statistic (q < 0.01 after correction for multiple 

testing), compared to both K. waltii and A. gossypii as outgroup sequences. 
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Table 5.2) Tajima test for differential rates of evolution on DNA binding domains 

    # of amino 
acid changes 

from K. waltii 
sequence 

 PAML branch 
length from 

common ancestor: 
K. waltii outgroup 

Gene 1 Gene 2 Tajima 
χ2

Ungap
-ped 

length 

Gene 
1 

Gene 
2 

p-value Gene 1 Gene 2 

HMS2 SKN7 27.6 167 55 12 2 × 10-7  1.24 0.41 
CUP2 HAA1 11 40 11 0 1 × 10-3  0.34 0 
FKH1 FKH2 8.9 100 16 3 3 × 10-3  0.30 0.07 
MIG1 MIG2 7.4 53 1 10 7 × 10-3    
EDS1 RGT1 3.6 41 6 1 0.06 0.66 0.14 
MSN2 MSN4 2.7 52 5 1 0.12 0.24 0.11 
ACE2 SWI5 2.7 83 5 1 0.12 0.14 0.09 
NRG1 NRG2 2 53 0 2 0.16 0.02 0.22 
DAL80 GZF3 1 35 3 1 0.32 0.18 0.08 
MET31 MET32 1 53 3 1 0.32 0.23 0.11 
STP3 STP4 1 23 0 1 0.32 0 0.09 
YHP1 YOX1 1 57 6 3 0.32 0.22 0.16 
ACA1 CST6 0.8 65 7 4 0.37 0.27 0.17 
OAF1 PIP2 0.7 39 2 4 0.41 0.11 0.30 
ECM22 UPC2 0.2 39 3 2 0.66 0.15 0.15 
GIS1 RPH1 0 26 1 1 1 0.04 0.04 
NHP6A NHP6B 0 69 3 3 1 0.06 0.05 
PHD1 SOK2 0 81 0 0 1   
 
 
 

Bold entries denote differential rates of evolution (q < 0.01 after correction for 

multiple testing) between the transcription factor paralogs, compared to both K. waltii 

and A. gossypii as outgroup sequences. 
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Literature analysis of transcription factor paralogs with differential rates of 

evolution 

Several transcription factor pairs demonstrated diffrential rates of evolution of one 

paralog, using both K. waltii and A. gossypii as outgroups.  The HMS2 and SKN7 pair of 

transcription factors showed the most significant difference in evolutionary rates: over 

100 amino acids changes occurred between HMS2 and the K. waltii homolog, whereas 

only 14 changes occurred between SKN7 and the outgroup sequence.  Strikingly, these 

changes correspond to the loss of a response regulator domain in HMS2 that is present in 

both SKN7 and the homologs from K. waltii and A. gossypii (Bateman et al., 2004).  The 

functional inactivation of an entire structural domain lends anecdotal support to the 

subfunctionalization theory, which predicts that certain functions of the ancestral 

sequence may be lost in one of the paralogs. 

Three pairs belong to the classical C2H2 zinc finger family: GIS1-RPH1, MIG1-

MIG2 and ACE2-SWI5.  All of these paralogs have significantly different amino acid 

changes outside of their DNA binding domains.  Notably, previous studies have 

demonstrated that Ace2 and Swi5 have different interaction partners.  The homeodomain 

transcription factor, Pho2, can directly interact with Swi5, but not Ace2 (Dohrmann et al., 

1996).  Conversely, the cyclin-dependent kinase, Cdc28, can phosphorylate Ace2, but not 

Pho5 (O'Conallain et al., 1999).   

Two pairs of transcription factor paralogs belong to the fungal-specific zinc 

binuclear cluster family: EDS1-RGT1 and ECM22-UPC2.  Recent studies have shown 

different interactions between Hap1 with Ecm22 and Upc2 at ergosterol-regulated 

promoters (Brandon Davies & Jasper Rine, UC Berkeley, personal communication). 
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Two other pairs are the only representatives of their respective transcription factor 

families.  Experimental characterization of Fkh1 and Fkh2 has been discussed in the 

Introduction.  Given the characterized roles of these transcription factors, it is possible 

that Fkh2 retains the ancestral function of cell-cycle regulation, whereas the accelerated 

evolution of Fkh1 has enabled it to acquire a role at the recombination enhancer.  Finally, 

Rlm1 and Smp1 are MADS box transcription factors involved in response to cell wall 

stress that have not been well-characterized (Dodou and Treisman, 1997).   

 
Met31 and Met32 interact with different proteins in vivo 

In addition to a genome-wide computational survey for different evolutionary 

rates between transcription factor paralogs, I was also interested in characterizing 

different functional roles for the regulators of sulfur utilization genes, Met31 and Met32.  

To assess whether Met31 and Met32 have different interaction partners in vivo, epitope-

tagged versions of these transcription factors were overexpressed in both methionine-

starved and methionine-replete conditions.  Met31FLAG- and Met32FLAG-containing 

complexes were recovered from whole cell extracts by immunoprecipitation with anti-

FLAG agarose beads.  Immunoblots with antibodies to Met4 demonstrated that both 

Met31 and Met32 interacted with Met4 in vivo (Figure 5.1A).  The multiple bands 

correspond to Met4 isoforms conjugated to various numbers of ubiquitin molecules 

(Kaiser et al., 2000).  In contrast, antibodies to Met28 only detected an interaction with 

Met32 (Figure 5.1B).  Since Met28 stabilizes the binding of Cbf1 to DNA (Kuras et al., 

1997), the binding of Met32 may increase the levels of Met4 recruitment mediated by 

Cbf1.  
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Figure 5.1) Met31 and Met32 interact differentially with Met28 in vivo 
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Figure 5.1   (continued) 

 (A) Met4 interacts with Met31FLAG and Met32FLAG.  Western blots with rabbit 

polyclonal anti-Met4 antibodies were used to probe proteins from whole cell extracts and 

from Met31FLAG or Met32FLAG immunoprecipitates.  Overexpression of epitope-tagged 

Met31FLAG or Met32FLAG was induced with galactose.  The sulfur regulatory response 

was activated by limiting methionine in the growth media (– corresponds to 0.05 mM 

methionine), or repressed by adding methionine to 1 mM (+).  Arrows denote 

ubiquitinated isoforms of Met4. 

(B) Met28 interacts with Met32FLAG, but not with Met31FLAG.  Same as above, 

except rabbit polyclonal anti-Met28 antibodies were used.  Arrows denote Met28. 
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The transcription of MET31 and MET32 are differentially regulated 

Promoter sequence analysis suggests that MET31 may be constitutively 

expressed, whereas MET32 is induced on sulfur limiting conditions.  Binding sites for 

both Cbf1 and Met31 or Met32 are absent from the MET31 promoter, but can be found in 

the MET32 promoter.  This hypothesis was verified by retrospective analysis of 

microarray data.  Relative gene expression for CBF1, GCN4, MET4, MET30, MET31 and 

MET32 were compiled from previously published studies on amino acid starvation 

(Gasch et al., 2000), 3-aminotriazole treatment (Natarajan et al., 2001), gcn4 deletion 

mutants (Hughes et al., 2000b) and cadmium treatment (Fauchon et al., 2002).  Only 

cadmium treatment represents a specific sulfur-limiting condition, whereas the first three 

conditions reflect general control in response to amino acid starvation.  Hierarchical 

clustering on this small set of genes revealed that expression levels of MET4, MET28, 

MET30, and MET32 were induced under cadmium treatment in a Met4-dependent 

manner (Figure 5.2A).  In contrast, CBF1 and MET31 showed less than two-fold 

expression change in multiple conditions. 

Intriguingly, the strong induction of MET28 under amino acid starvation 

conditions, as well as its lower expression levels in a gcn4∆ mutant, suggests that Gcn4 

exerts feed-forward regulation on the sulfur transcriptional network (Figure 5.2B).  In 

particular, Gcn4 activation by general amino acid control amplifies MET28 transcription.  

Higher levels of Met28 should stabilize Cbf1 and Met32 binding to sulfur-regulated 

promoters, thus potentially amplifying gene expression. 
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Figure 5.2) Transcriptional feedback of sulfur regulatory network 
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Figure 5.2 (continued) 

(A) Gene expression data for transcription factors that regulate sulfur utilization 

genes.  Each row corresponds to the labeled transcription factor, and each column 

corresponds to a different microarray condition.  The first five columns represent an 

amino acid starvation timecourse (Gasch et al., 2000).  Columns 6 to 14 were obtained 

from Natarajan et al., 2001.  Column 6 corresponds to a decrease of amino acid 

concentrations in half, in addition to leucine starvation; column 7 features treatment of a 

gcn4∆ strain with 100 mM 3-aminotriazole; column 8 compares a constitutive GCN4 

allele with wild-type; column 9 compares a wild-type strain with a gcn4∆ strain; column 

10 represents treatment of a wild-type strain with 10 mM 3-aminotriazole; and columns 

11 to 14 are replicate treatments of a wild-type strain with 100 mM 3-aminotriazole.  The 

last 8 columns correspond to replicate treatments of wild-type or met4∆ strains with 1 

mM cadmium.  Red pixels indicate induced genes, green pixels indicate repressed genes 

and pixel intensity reflects the magnitude of gene expression change.  (B) Feed-forward 

transcription factor network.  In addition to transcriptionally activating both Met4 and 

Met28, Gcn4 can directly bind to the promoters of some sulfur utilization genes. 
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Met31 and Met32 may be differentially phosphorylated 

Post-translational modifications represent another possible difference between the 

regulation of Met31 and Met32.  Indeed, a large-scale mass spectrometry effort purified 

phosphorylated isoforms of Met31 (Ho et al., 2002; Kevin Breitkreutz and Mike Tyers, 

unpublished observations).  Phosphorylated residues were mapped from peptide 

fragmentation spectra to Ser-26 or Ser-27; Ser-45 or Ser-46; and Ser155 or Ser-158 

(Kevin Breitkreutz and Mike Tyers, unpublished observations).  The amino acid 

sequence context of the Ser-46 phosphorylation site suggests that Met31 may be a 

substrate for the Cdc28 cyclin-dependent kinase (Yaffe et al, 2001).  Notably, a multiple 

sequence alignment of Met31 and Met32 orthologs from five closely-related yeast 

species revealed that none of the putatively phosphorylated serine residues in Met31 are 

conserved in corresponding positions of Met32 (Figure 5.3). 
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Figure 5.3) Multiple sequence alignment of phosphorylated residues on Met31 

 

MET31_Scer      MNVDEIFLKQAAEAIAVISSSPTHTDPIIRELLHRIRQSSP 
MET31_Spar      MNVDEVFLKQAAEAIAVTSSSPTHTDPIIRELLHRIRQSSP 
MET31_Smik      MNVDEIFLQQAAEAIAVTSASPTHTDPIIQELLQRIRQSSP 
MET31_Skud      MNADEVFLKQAAEAIAVTSSTPSNTDPIIHELLQRIRQSSP 
MET31_Sbay      MNADEVFLKQAAEAIVVTSSSSTTSDPIIQELLQRIRQSSP 
MET32_Scer      EDQDAAFIKQATEAIVDVSLNIDNIDPIIKELLERVRNRQN 
MET32_Spar      EDQDAAFIKQATEAIVDVSLNVDNIDPIIKELLERVRNRQN 
MET32_Smik      EDEDAAFIKQATEAIVDVSLNMDNIDPIIKELLERVRKRRN 
MET32_Skud      EDQDSAFIKQATEAIVDVSLNVDSIDPIIKELLQRVRNMQN 
MET32_Sbay      EDQDSAFIKQATEAIVDISLDINNIDPIIKELLQRVKNTRN 
                   : *  *:::*.  *      :*.*:::  
       |         |         |         | 
                   10        20        30        40 
 
 
 
MET31_Scer      RHSNTLTCQRNRKKLSEGSDVDVDELIKDAIKN 
MET31_Spar      RHSNTLTCQRNRKKLSEGSDVDVDELIKDAIKN 
MET31_Smik      RHSNTLTCQRNRKKLSEGSDVDVDELIKDAIKN 
MET31_Skud      RHSNTLTCRRNRKKLCEGSDVDVDELIKDAIKN 
MET31_Sbay      RHSNTLTCQRNRKKLCEGSDVDVDELIKDAIKN 
MET32_Scer      RHYDTLTCRRNRTKLLTAGGEGINELLKKVKQS 
MET32_Spar      RHYDTLTCRRNRTKLLTAGGEGINELLKKVKQS 
MET32_Smik      RHYDTLTCRRNRTKLLTAGGEGINELLRKVKQS 
MET32_Skud      RHYDTLTCRRNRTKLLTAGGESINELLKKVKQS 
MET32_Sbay      RHYDTLTCRRNRSKLLSAGGEGINELLKKVKQS 
                 ::*.  ... .::::.. :. 
    |         |         |         | 
   140  150  160  170 

 

Amino acid sequences, obtained from the MIT and Washington University 

genome sequencing centers, were aligned using T-COFFEE (Notredame et al., 2000).  In 

the above excerpts from the multiple sequence alignment, phosphorylated serine residues 

mapped by mass spectrometry on the S. cerevisiae protein are shown in bold.  Serines 

conserved in orthologous sequences are also indicated in bold.  Note that none of the 

columns aligned to phosphorylated serines are conserved in any of the MET32 orthologs. 
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DISCUSSION 

Differential regulatory roles ascribed to Met31 and Met32 

Based on the above experimental data, I hypothesize that Met31 is primarily 

responsible for the cell cycle regulation of sulfur utilization genes, and that Met32 is 

activated only under sulfur-limiting conditions.  Since Met28 stabilizes Cbf1 binding, 

Met32’s ability to interact with Met28 suggests that it may recruit Met4 more potently 

than Met31 could.  Notably, the promoters of single-copy homologs of MET31 and 

MET32 in Saccharomyces kluyveri, Kluyveromyces lactis and Ashbya gossypii also 

contain sequence motifs recognized by Cbf1 and Met31 or Met32 from S. cerevisiae 

(Figure 5.4).  These shared binding sites suggest that the ancestral homolog of the Met31 

or Met32 transcription factor was sulfur-regulated.  The lack of accelerated evolution and 

the presence of Cbf1 and Met31 or Met32-like binding sites in the promoters single-copy 

homologs suggest that Met31 and Met32 are regulated under complementary conditions, 

in accordance with the subfunctionalization theory of Force et al., 1999. 

 

An experimental proposal to test theories on the evolution of duplicated genes 

The accelerated evolution and duplication-divergence-complementation theories 

predict different outcomes for the ability of a single-copy ancestral homolog to 

complement a strain with mutations in both paralogs.  Double mutant strains for 

transcription factor paralogs can be generated by crosses of the Saccharomyces deletion 

strain collection (Winzeler et al., 1999).  The outgroup homolog from either K. waltii or 

A. gossypii, along with its promoter, could be transformed into the corresponding double 

mutant strain and tested for its ability to complement the double mutant.  If the 
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Figure 5.4) Putative regulatory sequences in promoters of Met31 or Met32 homologs 

 

 

Homologs to MET31 and MET32 were assigned by genome sequencing projects.  

Putative binding sites in the 1000 bp upstream of translation start are indicated: Cbf1 

(blue rectangles, TCACGTG), Met31 or Met32 (green circles, TGTGGC) and Gcn4 

(orange triangles, TGA[C|G]TCA).  The relative positions of binding sites are not drawn 

to scale.  A phylogenetic tree was constructed from a T-COFFEE multiple alignment of 

amino acid sequences.  Species abbreviations are as follows: Saccharomyces cerevisiae 

(Scer); S. paradoxus (Spar); S. mikatae (Smik); S. kudriavzevii (Skud); S. bayanus 

(Sbay); S. castellii (Scas); S. kluyveri (Sklu); Candida glabrata (CAGL); Kluyveromyces 

lactis (KLLA); Kluyveromyces waltii (Kwal); Ashbya gossypii (Agos).
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subfunctionalization theory is correct, then the outgroup homolog should fully 

complement the double mutant.  By contrast, if accelerated evolution has enabled the 

acquisition of a new function in one paralog, then the outgroup homolog would fail to 

fully complement the double mutant.  It is possible that the amino acid sequences 

functionally complement, but that the transcriptional regulation of one paralog may have 

diverged.  To test this possibility, these experiments could be repeated by integrating the 

outgroup homolog in the chromosomal locus of either S. cerevisiae paralog, thus placing 

it under the control of each derived promoter. 
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This dissertation has focused on characterizing how promoter architecture 

governs multifactorial transcriptional regulation in yeast.  Experimental studies on 

several mammalian enhanceosomes suggested that rigid distance constraints between 

transcription factor binding sites set the stereospecificity for the assembly of multiprotein 

regulatory complexes.  Given the recent availability of multiple yeast genome sequences 

and genome-wide expression data, I investigated whether general principles on distance 

constraints between transcription factor binding sites could be inferred.  In particular, I 

sought sequence-based rules that could predict whether any regulatory region could 

generate a particular condition-specific pattern of gene expression. 

I have developed computational approaches that evaluated the transcriptional 

regulatory information encoded by DNA sequences of a fixed length.  Genome-mean 

expression profiles indicated the regulatory potential of individual sequences.  As a proof 

of principle, profiles generated from previously published microarray data could identify 

known transcription factor binding sites.  Positional information for transcription factor 

binding sites was systematically confirmed, since the strongest associations with gene 

expression changes occurred for sequences found between 100 and 400 bp upstream of 

the translation start site.  Notably, less than 20% of genes whose promoters contained a 

transcription factor binding site were associated with significant gene expression 

changes, thus suggesting the involvement of additional transcription factors. 

By integrating comparative sequence data into the analysis of gene expression 

data, I confirmed the expectation that promoter architecture is under purifying selection.  

I predicted interactions between transcription factor binding sites using a series of 

statistical tests to identify pairs of DNA hexamers that were jointly conserved and closely 
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spaced.  Whereas computational analyses can often detect global trends, such as the 

importance of binding site spacing in transcription factor interactions, further 

experiments are often necessary to test predictions about individual examples.  I am 

pleased to note that my predicted interaction between Hap1 and the pair, Ecm22p and 

Upc2, in the regulation of ergosterol biosynthesis has been experimentally confirmed by 

Jasper Rine’s laboratory.  Thus, my computational approaches to detect statistical 

associations between DNA sequences and changes in gene expression can successfully 

predict transcription factors involved in the multifactorial transcriptional regulation in 

yeast.  These methods could be easily applied to find regulatory sequences in the core 

promoters of other eukaryotes whose genomes have been sequenced, and for which 

systematic gene expression data have been collected. 

I conducted experiments in order to glean mechanistic insights on how promoter 

architecture influences the collaborative recruitment of the coactivator, Met4, by the 

yeast transcription factors, Cbf1p and Met31 or Met32p, under methionine starvation 

conditions.  There were too few examples of annotated promoters available to make 

statistically significant inferences about helical phasing or distance constraints.  Thus, I 

developed a synthetic promoter assay to assess the influence of varying distances and 

sequence contexts between these transcription factors.  I confirmed that a Cbf1 binding 

site was required upstream of a Met31 or Met32 binding site for high levels of reporter 

gene activation in vivo.  My results from growth rates of fixed-length promoter libraries 

revealed key differences in the distance constraints between transcription factor binding 

sites.  In contrast with cooperatively binding transcription factors, whose synergistic 

activation decreases precipitously when the distance between binding sites was increased 
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by more than 10 bp, levels of gene activation were fairly consistent when Cbf1 and 

Met31 or Met32 binding sites were spaced between 18 bp and 50 bp apart.  Interestingly, 

binding sites spaced less than 18 bp apart could not support high levels of reporter gene 

activation, even though the individual binding sites did not overlap.  I also discovered 

that certain sequence contexts dramatically diminished reporter gene activation. 

Taken together, these experiments suggest that the process of Met4 recruitment 

differs considerably from the lock-and-key arrangements of bound transcription factors 

predicted by the enhanceosome model.  Instead, DNA bendability may enforce an 

induced fit between the bound transcription factors and Met4.  Whereas the distance 

between binding sites plays a diminished role in bridging bound transcription factors, 

intervening sequences with low intrinsic bendability could impair coactivator 

recruitment.  Thus, the key requirements of promoter architecture may rely heavily on the 

molecular mechanism of transcription factor interactions at a particular set of co-

regulated promoters.  If promoter architectures were indeed idiosyncratic, it would be 

difficult to generalize experimental characterizations of transcription factor interactions. 

In addition, it would be very difficult to make highly accurate computational predictions 

of multifactorial regulation for individual regulatory regions, without some experimental 

knowledge about the interaction mechanisms of the relevant transcription factors. 

The myriad effects of long-range interactions among transcription factor binding 

sites on multifactorial regulation pose similar challenges to predicting protein structures 

from secondary structure elements.  Whereas general principles – such as close spacing 

of binding sites or van der Waals interactions among protein side chains – may govern 

these processes, they provide little predictive power for individual examples.  Further 
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studies on promoter architecture may benefit from a framework that formalizes how 

enthalpy gains from protein-protein interactions are offset by the entropy loss of 

multiprotein complex formation.  Thermodynamic measurements on promoter variants 

with different spacing and sequence contexts between transcription factor binding sites 

could then be associated with changes in gene activation.  Such a theory on the energetics 

of multiprotein complex formation could provide the quantitative precision needed to 

predict how a particular transcriptional control region adopts a conformation that enables 

transcriptional activation. 
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